פתור עבור m (complex solution)
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 2\text{ and }x\neq 5\\m\in \mathrm{C}\text{, }&x=0\text{ and }n=-2\end{matrix}\right.
פתור עבור n (complex solution)
n=-\left(mx+x+2\right)
x\neq 2\text{ and }x\neq 5
פתור עבור m
\left\{\begin{matrix}m=-\frac{x+n+2}{x}\text{, }&x\neq 0\text{ and }x\neq 5\text{ and }x\neq 2\\m\in \mathrm{R}\text{, }&x=0\text{ and }n=-2\end{matrix}\right.
פתור עבור n
n=-\left(mx+x+2\right)
x\neq 5\text{ and }x\neq 2
גרף
שתף
הועתק ללוח
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
הכפל את שני הצדדים של המשוואה ב- \left(x-5\right)\left(x-2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- x+1 ולכנס איברים דומים.
mx+n=x^{2}-x-2-x^{2}
החסר x^{2} משני האגפים.
mx+n=-x-2
כנס את x^{2} ו- -x^{2} כדי לקבל 0.
mx=-x-2-n
החסר n משני האגפים.
xm=-x-n-2
המשוואה היא בעלת צורה סטנדרטית.
\frac{xm}{x}=\frac{-x-n-2}{x}
חלק את שני האגפים ב- x.
m=\frac{-x-n-2}{x}
חילוק ב- x מבטל את ההכפלה ב- x.
m=-\frac{x+n+2}{x}
חלק את -x-2-n ב- x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
הכפל את שני הצדדים של המשוואה ב- \left(x-5\right)\left(x-2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- x+1 ולכנס איברים דומים.
mx+n=x^{2}-x-2-x^{2}
החסר x^{2} משני האגפים.
mx+n=-x-2
כנס את x^{2} ו- -x^{2} כדי לקבל 0.
n=-x-2-mx
החסר mx משני האגפים.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
הכפל את שני הצדדים של המשוואה ב- \left(x-5\right)\left(x-2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- x+1 ולכנס איברים דומים.
mx+n=x^{2}-x-2-x^{2}
החסר x^{2} משני האגפים.
mx+n=-x-2
כנס את x^{2} ו- -x^{2} כדי לקבל 0.
mx=-x-2-n
החסר n משני האגפים.
xm=-x-n-2
המשוואה היא בעלת צורה סטנדרטית.
\frac{xm}{x}=\frac{-x-n-2}{x}
חלק את שני האגפים ב- x.
m=\frac{-x-n-2}{x}
חילוק ב- x מבטל את ההכפלה ב- x.
m=-\frac{x+n+2}{x}
חלק את -x-2-n ב- x.
x^{2}+mx+n=\left(x-2\right)\left(x+1\right)
הכפל את שני הצדדים של המשוואה ב- \left(x-5\right)\left(x-2\right), הכפולה המשותפת הנמוכה ביותר של x^{2}-7x+10,x-5.
x^{2}+mx+n=x^{2}-x-2
השתמש בחוק הפילוג כדי להכפיל את x-2 ב- x+1 ולכנס איברים דומים.
mx+n=x^{2}-x-2-x^{2}
החסר x^{2} משני האגפים.
mx+n=-x-2
כנס את x^{2} ו- -x^{2} כדי לקבל 0.
n=-x-2-mx
החסר mx משני האגפים.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}