פתור עבור x
x=-40
x=0
גרף
שתף
הועתק ללוח
x^{2}+40x=0
הכפל את שני אגפי המשוואה ב- \left(x-\left(-\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right).
x\left(x+40\right)=0
הוצא את הגורם המשותף x.
x=0 x=-40
כדי למצוא פתרונות משוואה, פתור את x=0 ו- x+40=0.
x^{2}+40x=0
הכפל את שני אגפי המשוואה ב- \left(x-\left(-\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right).
x=\frac{-40±\sqrt{40^{2}}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- 40 במקום b, וב- 0 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±40}{2}
הוצא את השורש הריבועי של 40^{2}.
x=\frac{0}{2}
כעת פתור את המשוואה x=\frac{-40±40}{2} כאשר ± כולל סימן חיבור. הוסף את -40 ל- 40.
x=0
חלק את 0 ב- 2.
x=-\frac{80}{2}
כעת פתור את המשוואה x=\frac{-40±40}{2} כאשר ± כולל סימן חיסור. החסר 40 מ- -40.
x=-40
חלק את -80 ב- 2.
x=0 x=-40
המשוואה נפתרה כעת.
x^{2}+40x=0
הכפל את שני אגפי המשוואה ב- \left(x-\left(-\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{17}-\frac{3}{2}\right)\right).
x^{2}+40x+20^{2}=20^{2}
חלק את 40, המקדם של האיבר x, ב- 2 כדי לקבל 20. לאחר מכן הוסף את הריבוע של 20 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}+40x+400=400
20 בריבוע.
\left(x+20\right)^{2}=400
פרק x^{2}+40x+400 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+20\right)^{2}}=\sqrt{400}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x+20=20 x+20=-20
פשט.
x=0 x=-40
החסר 20 משני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}