דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
הכפל את שני הצדדים של המשוואה ב- 12, הכפולה המשותפת הנמוכה ביותר של 3,4,12.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
השתמש בחוק הפילוג כדי להכפיל את 4 ב- x^{2}+2.
4x^{2}+8-3x^{2}-3=x+5
השתמש בחוק הפילוג כדי להכפיל את -3 ב- x^{2}+1.
x^{2}+8-3=x+5
כנס את ‎4x^{2} ו- ‎-3x^{2} כדי לקבל ‎x^{2}.
x^{2}+5=x+5
החסר את 3 מ- 8 כדי לקבל 5.
x^{2}+5-x=5
החסר ‎x משני האגפים.
x^{2}+5-x-5=0
החסר ‎5 משני האגפים.
x^{2}-x=0
החסר את 5 מ- 5 כדי לקבל 0.
x\left(x-1\right)=0
הוצא את הגורם המשותף x.
x=0 x=1
כדי למצוא פתרונות משוואה, פתור את x=0 ו- x-1=0.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
הכפל את שני הצדדים של המשוואה ב- 12, הכפולה המשותפת הנמוכה ביותר של 3,4,12.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
השתמש בחוק הפילוג כדי להכפיל את 4 ב- x^{2}+2.
4x^{2}+8-3x^{2}-3=x+5
השתמש בחוק הפילוג כדי להכפיל את -3 ב- x^{2}+1.
x^{2}+8-3=x+5
כנס את ‎4x^{2} ו- ‎-3x^{2} כדי לקבל ‎x^{2}.
x^{2}+5=x+5
החסר את 3 מ- 8 כדי לקבל 5.
x^{2}+5-x=5
החסר ‎x משני האגפים.
x^{2}+5-x-5=0
החסר ‎5 משני האגפים.
x^{2}-x=0
החסר את 5 מ- 5 כדי לקבל 0.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -1 במקום b, וב- 0 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±1}{2}
הוצא את השורש הריבועי של 1.
x=\frac{1±1}{2}
ההופכי של ‎-1 הוא ‎1.
x=\frac{2}{2}
כעת פתור את המשוואה x=\frac{1±1}{2} כאשר ± כולל סימן חיבור. הוסף את ‎1 ל- ‎1.
x=1
חלק את ‎2 ב- ‎2.
x=\frac{0}{2}
כעת פתור את המשוואה x=\frac{1±1}{2} כאשר ± כולל סימן חיסור. החסר ‎1 מ- ‎1.
x=0
חלק את ‎0 ב- ‎2.
x=1 x=0
המשוואה נפתרה כעת.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
הכפל את שני הצדדים של המשוואה ב- 12, הכפולה המשותפת הנמוכה ביותר של 3,4,12.
4x^{2}+8-3\left(x^{2}+1\right)=x+5
השתמש בחוק הפילוג כדי להכפיל את 4 ב- x^{2}+2.
4x^{2}+8-3x^{2}-3=x+5
השתמש בחוק הפילוג כדי להכפיל את -3 ב- x^{2}+1.
x^{2}+8-3=x+5
כנס את ‎4x^{2} ו- ‎-3x^{2} כדי לקבל ‎x^{2}.
x^{2}+5=x+5
החסר את 3 מ- 8 כדי לקבל 5.
x^{2}+5-x=5
החסר ‎x משני האגפים.
x^{2}+5-x-5=0
החסר ‎5 משני האגפים.
x^{2}-x=0
החסר את 5 מ- 5 כדי לקבל 0.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
חלק את ‎-1, המקדם של האיבר x, ב- 2 כדי לקבל ‎-\frac{1}{2}. לאחר מכן הוסף את הריבוע של -\frac{1}{2} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
העלה את ‎-\frac{1}{2} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
פרק x^{2}-x+\frac{1}{4} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
פשט.
x=1 x=0
הוסף ‎\frac{1}{2} לשני אגפי המשוואה.