הערך
a
גזור ביחס ל- a
1
שתף
הועתק ללוח
\frac{a^{5}a^{-1}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}}
כדי להכפיל חזקות בעלות אותו בסיס, חבר את המעריכים שלהן. חבר את 3 ו- 2 כדי לקבל 5.
\frac{a^{4}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}}
כדי להכפיל חזקות בעלות אותו בסיס, חבר את המעריכים שלהן. חבר את 5 ו- -1 כדי לקבל 4.
\frac{a^{4}}{\left(\frac{1}{a^{3}}\right)^{-1}}
שכתב את a^{8} כ- a^{5}a^{3}. ביטול a^{5} גם במונה וגם במכנה.
\frac{a^{4}}{\frac{1^{-1}}{\left(a^{3}\right)^{-1}}}
כדי להעלות את \frac{1}{a^{3}} בחזקה, העלה גם המונה וגם את המכנה בחזקה ולאחר מכן בצע חילוק.
\frac{a^{4}\left(a^{3}\right)^{-1}}{1^{-1}}
חלק את a^{4} ב- \frac{1^{-1}}{\left(a^{3}\right)^{-1}} על-ידי הכפלת a^{4} בהופכי של \frac{1^{-1}}{\left(a^{3}\right)^{-1}}.
\frac{a^{4}a^{-3}}{1^{-1}}
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את 3 ו- -1 כדי לקבל -3.
\frac{a^{1}}{1^{-1}}
כדי להכפיל חזקות בעלות אותו בסיס, חבר את המעריכים שלהן. חבר את 4 ו- -3 כדי לקבל 1.
\frac{a}{1^{-1}}
חשב את a בחזקת 1 וקבל a.
\frac{a}{1}
חשב את 1 בחזקת -1 וקבל 1.
a
התוצאה של כל מספר המחולק באחד היא המספר עצמו.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{5}a^{-1}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}})
כדי להכפיל חזקות בעלות אותו בסיס, חבר את המעריכים שלהן. חבר את 3 ו- 2 כדי לקבל 5.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\left(\frac{a^{5}}{a^{8}}\right)^{-1}})
כדי להכפיל חזקות בעלות אותו בסיס, חבר את המעריכים שלהן. חבר את 5 ו- -1 כדי לקבל 4.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\left(\frac{1}{a^{3}}\right)^{-1}})
שכתב את a^{8} כ- a^{5}a^{3}. ביטול a^{5} גם במונה וגם במכנה.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}}{\frac{1^{-1}}{\left(a^{3}\right)^{-1}}})
כדי להעלות את \frac{1}{a^{3}} בחזקה, העלה גם המונה וגם את המכנה בחזקה ולאחר מכן בצע חילוק.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}\left(a^{3}\right)^{-1}}{1^{-1}})
חלק את a^{4} ב- \frac{1^{-1}}{\left(a^{3}\right)^{-1}} על-ידי הכפלת a^{4} בהופכי של \frac{1^{-1}}{\left(a^{3}\right)^{-1}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{4}a^{-3}}{1^{-1}})
כדי להעלות חזקה בחזקה אחרת, הכפל את המעריכים. הכפל את 3 ו- -1 כדי לקבל -3.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{1}}{1^{-1}})
כדי להכפיל חזקות בעלות אותו בסיס, חבר את המעריכים שלהן. חבר את 4 ו- -3 כדי לקבל 1.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{1^{-1}})
חשב את a בחזקת 1 וקבל a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a}{1})
חשב את 1 בחזקת -1 וקבל 1.
\frac{\mathrm{d}}{\mathrm{d}a}(a)
התוצאה של כל מספר המחולק באחד היא המספר עצמו.
a^{1-1}
הנגזרת של ax^{n} מnax^{n-1}.
a^{0}
החסר 1 מ- 1.
1
עבור כל איבר t מלבד 0, t^{0}=1.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}