פתור עבור a
a=-\frac{\beta }{-\beta ^{2}+\beta -1}
\beta \neq 0
פתור עבור β
\beta =-\frac{\sqrt{\left(1-a\right)\left(3a+1\right)}-a-1}{2a}
\beta =\frac{\sqrt{\left(1-a\right)\left(3a+1\right)}+a+1}{2a}\text{, }a\neq 0\text{ and }a\geq -\frac{1}{3}\text{ and }a\leq 1
שתף
הועתק ללוח
\beta \left(a+1\right)=\left(\beta ^{2}+1\right)a
הכפל את שני הצדדים של המשוואה ב- \beta \left(\beta ^{2}+1\right), הכפולה המשותפת הנמוכה ביותר של \beta ^{2}+1,\beta .
\beta a+\beta =\left(\beta ^{2}+1\right)a
השתמש בחוק הפילוג כדי להכפיל את \beta ב- a+1.
\beta a+\beta =\beta ^{2}a+a
השתמש בחוק הפילוג כדי להכפיל את \beta ^{2}+1 ב- a.
\beta a+\beta -\beta ^{2}a=a
החסר \beta ^{2}a משני האגפים.
\beta a+\beta -\beta ^{2}a-a=0
החסר a משני האגפים.
\beta a-\beta ^{2}a-a=-\beta
החסר \beta משני האגפים. כל מספר המוחסר מאפס נותן את השלילה שלו.
\left(\beta -\beta ^{2}-1\right)a=-\beta
כנס את כל האיברים המכילים a.
\left(-\beta ^{2}+\beta -1\right)a=-\beta
המשוואה היא בעלת צורה סטנדרטית.
\frac{\left(-\beta ^{2}+\beta -1\right)a}{-\beta ^{2}+\beta -1}=-\frac{\beta }{-\beta ^{2}+\beta -1}
חלק את שני האגפים ב- -\beta ^{2}+\beta -1.
a=-\frac{\beta }{-\beta ^{2}+\beta -1}
חילוק ב- -\beta ^{2}+\beta -1 מבטל את ההכפלה ב- -\beta ^{2}+\beta -1.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}