פתור עבור x
x=-\frac{1}{2}=-0.5
x=5
גרף
שתף
הועתק ללוח
2x^{2}-9x-5=0
המשתנה x אינו יכול להיות שווה ל- -3 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x+3.
a+b=-9 ab=2\left(-5\right)=-10
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- 2x^{2}+ax+bx-5. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-10 2,-5
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -10.
1-10=-9 2-5=-3
חשב את הסכום של כל צמד.
a=-10 b=1
הפתרון הוא הצמד שנותן את הסכום -9.
\left(2x^{2}-10x\right)+\left(x-5\right)
שכתב את 2x^{2}-9x-5 כ- \left(2x^{2}-10x\right)+\left(x-5\right).
2x\left(x-5\right)+x-5
הוצא את הגורם המשותף 2x ב- 2x^{2}-10x.
\left(x-5\right)\left(2x+1\right)
הוצא את האיבר המשותף x-5 באמצעות חוק הפילוג.
x=5 x=-\frac{1}{2}
כדי למצוא פתרונות משוואה, פתור את x-5=0 ו- 2x+1=0.
2x^{2}-9x-5=0
המשתנה x אינו יכול להיות שווה ל- -3 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x+3.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 2 במקום a, ב- -9 במקום b, וב- -5 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\left(-5\right)}}{2\times 2}
-9 בריבוע.
x=\frac{-\left(-9\right)±\sqrt{81-8\left(-5\right)}}{2\times 2}
הכפל את -4 ב- 2.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2\times 2}
הכפל את -8 ב- -5.
x=\frac{-\left(-9\right)±\sqrt{121}}{2\times 2}
הוסף את 81 ל- 40.
x=\frac{-\left(-9\right)±11}{2\times 2}
הוצא את השורש הריבועי של 121.
x=\frac{9±11}{2\times 2}
ההופכי של -9 הוא 9.
x=\frac{9±11}{4}
הכפל את 2 ב- 2.
x=\frac{20}{4}
כעת פתור את המשוואה x=\frac{9±11}{4} כאשר ± כולל סימן חיבור. הוסף את 9 ל- 11.
x=5
חלק את 20 ב- 4.
x=-\frac{2}{4}
כעת פתור את המשוואה x=\frac{9±11}{4} כאשר ± כולל סימן חיסור. החסר 11 מ- 9.
x=-\frac{1}{2}
צמצם את השבר \frac{-2}{4} לאיברים נמוכים יותר על-ידי ביטול 2.
x=5 x=-\frac{1}{2}
המשוואה נפתרה כעת.
2x^{2}-9x-5=0
המשתנה x אינו יכול להיות שווה ל- -3 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- x+3.
2x^{2}-9x=5
הוסף 5 משני הצדדים. כל מספר ועוד אפס שווה לעצמו.
\frac{2x^{2}-9x}{2}=\frac{5}{2}
חלק את שני האגפים ב- 2.
x^{2}-\frac{9}{2}x=\frac{5}{2}
חילוק ב- 2 מבטל את ההכפלה ב- 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=\frac{5}{2}+\left(-\frac{9}{4}\right)^{2}
חלק את -\frac{9}{2}, המקדם של האיבר x, ב- 2 כדי לקבל -\frac{9}{4}. לאחר מכן הוסף את הריבוע של -\frac{9}{4} לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{5}{2}+\frac{81}{16}
העלה את -\frac{9}{4} בריבוע על-ידי העלאת המונה והמכנה של השבר בריבוע.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{121}{16}
הוסף את \frac{5}{2} ל- \frac{81}{16} על-ידי מציאת מכנה משותף וחיבור המונים. לאחר מכן צמצם את השבר לאיברים הקטנים ביותר אם הדבר אפשרי.
\left(x-\frac{9}{4}\right)^{2}=\frac{121}{16}
פרק x^{2}-\frac{9}{2}x+\frac{81}{16} לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-\frac{9}{4}=\frac{11}{4} x-\frac{9}{4}=-\frac{11}{4}
פשט.
x=5 x=-\frac{1}{2}
הוסף \frac{9}{4} לשני אגפי המשוואה.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}