הערך
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
גזור ביחס ל- m
\frac{-m^{4}+2mn^{3}+n^{4}-2nm^{3}-3\left(mn\right)^{2}}{\left(m^{3}+n^{3}\right)^{2}}
שתף
הועתק ללוח
\frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m}{\left(m+n\right)\left(m-n\right)}-\frac{1}{m-n}
פרק את m^{3}+n^{3} לגורמים. פרק את m^{2}-n^{2} לגורמים.
\frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}+\frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של \left(m+n\right)\left(m^{2}-mn+n^{2}\right) ו- \left(m+n\right)\left(m-n\right) היא \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). הכפל את \frac{2mn}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)} ב- \frac{m-n}{m-n}. הכפל את \frac{2m}{\left(m+n\right)\left(m-n\right)} ב- \frac{m^{2}-mn+n^{2}}{m^{2}-mn+n^{2}}.
\frac{2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
מכיוון ש- \frac{2mn\left(m-n\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} ו- \frac{2m\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} כוללים מכנה זהה, חבר אותם על-ידי חיבור המונים שלהם.
\frac{2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
בצע את פעולות הכפל ב- 2mn\left(m-n\right)+2m\left(m^{2}-mn+n^{2}\right).
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{1}{m-n}
כינוס איברים דומים ב- 2m^{2}n-2mn^{2}+2m^{3}-2m^{2}n+2mn^{2}.
\frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}-\frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
כדי לחבר או להחסיר ביטויים, הרחב אותם כדי ליצור עבורם מכנה זהה. המכפלה המשותפת הקטנה ביותר של \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right) ו- m-n היא \left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right). הכפל את \frac{1}{m-n} ב- \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
מכיוון ש- \frac{2m^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} ו- \frac{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)} כוללים מכנה זהה, חסר אותם על-ידי חיסור המונים שלהם.
\frac{2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
בצע את פעולות הכפל ב- 2m^{3}-\left(m+n\right)\left(m^{2}-mn+n^{2}\right).
\frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
כינוס איברים דומים ב- 2m^{3}-m^{3}+m^{2}n-mn^{2}-nm^{2}+n^{2}m-n^{3}.
\frac{\left(m-n\right)\left(m^{2}+mn+n^{2}\right)}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}
פרק לגורמים את הביטויים שלא פורקו כבר לגורמים ב- \frac{m^{3}-n^{3}}{\left(m+n\right)\left(m-n\right)\left(m^{2}-mn+n^{2}\right)}.
\frac{m^{2}+mn+n^{2}}{\left(m+n\right)\left(m^{2}-mn+n^{2}\right)}
ביטול m-n גם במונה וגם במכנה.
\frac{m^{2}+mn+n^{2}}{m^{3}+n^{3}}
פיתוח \left(m+n\right)\left(m^{2}-mn+n^{2}\right).
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}