דילוג לתוכן העיקרי
פתור עבור w
Tick mark Image

בעיות דומות מחיפוש באינטרנט

שתף

2=\frac{1}{4}w\left(3^{\frac{1}{2}}-i\right)\left(1+i\right)
המשתנה w אינו יכול להיות שווה ל- ‎0 מאחר שחלוקה באפס אינה מוגדרת. הכפל את שני אגפי המשוואה ב- ‎w.
2=\left(\frac{1}{4}\times 1+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
הכפל את ‎\frac{1}{4} ב- ‎1+i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\left(3^{\frac{1}{2}}-i\right)
בצע את פעולות הכפל ב- ‎\frac{1}{4}\times 1+\frac{1}{4}i.
2=\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w
השתמש בחוק הפילוג כדי להכפיל את \left(\frac{1}{4}+\frac{1}{4}i\right)w ב- 3^{\frac{1}{2}}-i.
\left(\frac{1}{4}+\frac{1}{4}i\right)w\times 3^{\frac{1}{2}}+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
החלף בין הצדדים כך שכל איברי המשתנים יופיעו בצד השמאלי.
\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)w+\left(\frac{1}{4}-\frac{1}{4}i\right)w=2
סדר מחדש את האיברים.
\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w=2
כנס את כל האיברים המכילים ‎w.
\frac{\left(\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)\right)w}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
חלק את שני האגפים ב- ‎\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{2}{\sqrt{3}\left(\frac{1}{4}+\frac{1}{4}i\right)+\left(\frac{1}{4}-\frac{1}{4}i\right)}
חילוק ב- ‎\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right) מבטל את ההכפלה ב- ‎\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).
w=\frac{8}{\sqrt{3}\left(1+i\right)+\left(1-i\right)}
חלק את ‎2 ב- ‎\left(\frac{1}{4}+\frac{1}{4}i\right)\sqrt{3}+\left(\frac{1}{4}-\frac{1}{4}i\right).