פתור עבור x
x=10
גרף
שתף
הועתק ללוח
\frac{1}{2}x+\frac{1}{2}\left(-1\right)-\frac{1}{3}\left(x+3\right)=\frac{1}{6}
השתמש בחוק הפילוג כדי להכפיל את \frac{1}{2} ב- x-1.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}\left(x+3\right)=\frac{1}{6}
הכפל את \frac{1}{2} ו- -1 כדי לקבל -\frac{1}{2}.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}x-\frac{1}{3}\times 3=\frac{1}{6}
השתמש בחוק הפילוג כדי להכפיל את -\frac{1}{3} ב- x+3.
\frac{1}{2}x-\frac{1}{2}-\frac{1}{3}x-1=\frac{1}{6}
ביטול 3 ו- 3.
\frac{1}{6}x-\frac{1}{2}-1=\frac{1}{6}
כנס את \frac{1}{2}x ו- -\frac{1}{3}x כדי לקבל \frac{1}{6}x.
\frac{1}{6}x-\frac{1}{2}-\frac{2}{2}=\frac{1}{6}
המר את 1 לשבר \frac{2}{2}.
\frac{1}{6}x+\frac{-1-2}{2}=\frac{1}{6}
מכיוון ש- -\frac{1}{2} ו- \frac{2}{2} כוללים מכנה זהה, חסר אותם על-ידי חיסור המונים שלהם.
\frac{1}{6}x-\frac{3}{2}=\frac{1}{6}
החסר את 2 מ- -1 כדי לקבל -3.
\frac{1}{6}x=\frac{1}{6}+\frac{3}{2}
הוסף \frac{3}{2} משני הצדדים.
\frac{1}{6}x=\frac{1}{6}+\frac{9}{6}
המכפלה המשותפת הקטנה ביותר של 6 ו- 2 היא 6. המר את \frac{1}{6} ו- \frac{3}{2} לשברים עם מכנה 6.
\frac{1}{6}x=\frac{1+9}{6}
מכיוון ש- \frac{1}{6} ו- \frac{9}{6} כוללים מכנה זהה, חבר אותם על-ידי חיבור המונים שלהם.
\frac{1}{6}x=\frac{10}{6}
חבר את 1 ו- 9 כדי לקבל 10.
\frac{1}{6}x=\frac{5}{3}
צמצם את השבר \frac{10}{6} לאיברים נמוכים יותר על-ידי ביטול 2.
x=\frac{5}{3}\times 6
הכפל את שני האגפים ב- 6, ההופכי של \frac{1}{6}.
x=\frac{5\times 6}{3}
בטא את \frac{5}{3}\times 6 כשבר אחד.
x=\frac{30}{3}
הכפל את 5 ו- 6 כדי לקבל 30.
x=10
חלק את 30 ב- 3 כדי לקבל 10.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}