דילוג לתוכן העיקרי
פתור עבור x
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

\left(1-x\right)^{2}=4.5\times 2
הכפל את שני האגפים ב- ‎2, ההופכי של ‎\frac{1}{2}.
\left(1-x\right)^{2}=9
הכפל את ‎4.5 ו- ‎2 כדי לקבל ‎9.
1-2x+x^{2}=9
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(1-x\right)^{2}.
1-2x+x^{2}-9=0
החסר ‎9 משני האגפים.
-8-2x+x^{2}=0
החסר את 9 מ- 1 כדי לקבל -8.
x^{2}-2x-8=0
סדר מחדש את הפולינום כדי להעביר אותה לצורה סטנדרטית. מקם את האיברים לפי הסדר מהחזקה הגבוהה ביותר לנמוכה ביותר.
a+b=-2 ab=-8
כדי לפתור את המשוואה, פרק את x^{2}-2x-8 לגורמים באמצעות הנוסחה x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-8 2,-4
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -8.
1-8=-7 2-4=-2
חשב את הסכום של כל צמד.
a=-4 b=2
הפתרון הוא הצמד שנותן את הסכום -2.
\left(x-4\right)\left(x+2\right)
שכתב את הביטוי המפורק לגורמים \left(x+a\right)\left(x+b\right) באמצעות הערכים שהתקבלו.
x=4 x=-2
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+2=0.
\left(1-x\right)^{2}=4.5\times 2
הכפל את שני האגפים ב- ‎2, ההופכי של ‎\frac{1}{2}.
\left(1-x\right)^{2}=9
הכפל את ‎4.5 ו- ‎2 כדי לקבל ‎9.
1-2x+x^{2}=9
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(1-x\right)^{2}.
1-2x+x^{2}-9=0
החסר ‎9 משני האגפים.
-8-2x+x^{2}=0
החסר את 9 מ- 1 כדי לקבל -8.
x^{2}-2x-8=0
סדר מחדש את הפולינום כדי להעביר אותה לצורה סטנדרטית. מקם את האיברים לפי הסדר מהחזקה הגבוהה ביותר לנמוכה ביותר.
a+b=-2 ab=1\left(-8\right)=-8
כדי לפתור את המשוואה, פרק את האגף השמאלי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את האגף השמאלי כ- x^{2}+ax+bx-8. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
1,-8 2,-4
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. פרט את כל צמדי המספרים השלמים שנותנים את המכפלה -8.
1-8=-7 2-4=-2
חשב את הסכום של כל צמד.
a=-4 b=2
הפתרון הוא הצמד שנותן את הסכום -2.
\left(x^{2}-4x\right)+\left(2x-8\right)
שכתב את ‎x^{2}-2x-8 כ- ‎\left(x^{2}-4x\right)+\left(2x-8\right).
x\left(x-4\right)+2\left(x-4\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 2 בקבוצה השניה.
\left(x-4\right)\left(x+2\right)
הוצא את האיבר המשותף x-4 באמצעות חוק הפילוג.
x=4 x=-2
כדי למצוא פתרונות משוואה, פתור את x-4=0 ו- x+2=0.
\left(1-x\right)^{2}=4.5\times 2
הכפל את שני האגפים ב- ‎2, ההופכי של ‎\frac{1}{2}.
\left(1-x\right)^{2}=9
הכפל את ‎4.5 ו- ‎2 כדי לקבל ‎9.
1-2x+x^{2}=9
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(1-x\right)^{2}.
1-2x+x^{2}-9=0
החסר ‎9 משני האגפים.
-8-2x+x^{2}=0
החסר את 9 מ- 1 כדי לקבל -8.
x^{2}-2x-8=0
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-8\right)}}{2}
למשוואה זו יש צורה סטנדרטית: ax^{2}+bx+c=0. השתמש ב- 1 במקום a, ב- -2 במקום b, וב- -8 במקום c בנוסחה הריבועית, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-8\right)}}{2}
‎-2 בריבוע.
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2}
הכפל את ‎-4 ב- ‎-8.
x=\frac{-\left(-2\right)±\sqrt{36}}{2}
הוסף את ‎4 ל- ‎32.
x=\frac{-\left(-2\right)±6}{2}
הוצא את השורש הריבועי של 36.
x=\frac{2±6}{2}
ההופכי של ‎-2 הוא ‎2.
x=\frac{8}{2}
כעת פתור את המשוואה x=\frac{2±6}{2} כאשר ± כולל סימן חיבור. הוסף את ‎2 ל- ‎6.
x=4
חלק את ‎8 ב- ‎2.
x=-\frac{4}{2}
כעת פתור את המשוואה x=\frac{2±6}{2} כאשר ± כולל סימן חיסור. החסר ‎6 מ- ‎2.
x=-2
חלק את ‎-4 ב- ‎2.
x=4 x=-2
המשוואה נפתרה כעת.
\left(1-x\right)^{2}=4.5\times 2
הכפל את שני האגפים ב- ‎2, ההופכי של ‎\frac{1}{2}.
\left(1-x\right)^{2}=9
הכפל את ‎4.5 ו- ‎2 כדי לקבל ‎9.
1-2x+x^{2}=9
השתמש בבינום של ניוטון \left(a-b\right)^{2}=a^{2}-2ab+b^{2} כדי להרחיב את ‎\left(1-x\right)^{2}.
-2x+x^{2}=9-1
החסר ‎1 משני האגפים.
-2x+x^{2}=8
החסר את 1 מ- 9 כדי לקבל 8.
x^{2}-2x=8
ניתן לפתור משוואות ריבועיות כגון זו בשיטת השלמת הריבוע. כדי להשלים את הריבוע, המשוואה חייבת תחילה להיות בצורה x^{2}+bx=c.
x^{2}-2x+1=8+1
חלק את ‎-2, המקדם של האיבר x, ב- 2 כדי לקבל ‎-1. לאחר מכן הוסף את הריבוע של -1 לשני אגפי המשוואה. שלב זה הופך את האגף השמאלי של המשוואה לריבוע מושלם.
x^{2}-2x+1=9
הוסף את ‎8 ל- ‎1.
\left(x-1\right)^{2}=9
פרק x^{2}-2x+1 לגורמים. באופן כללי, x^{2}+bx+c הוא ריבוע מושלם, ניתן תמיד לפרק אותו לגורמים \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{9}
הוצא את השורש הריבועי של שני אגפי המשוואה.
x-1=3 x-1=-3
פשט.
x=4 x=-2
הוסף ‎1 לשני אגפי המשוואה.