הערך
\frac{-\sqrt{6}-\sqrt{10}}{2}\approx -2.805883701
שתף
הועתק ללוח
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right)}
הפוך את המכנה של \frac{\sqrt{2}}{\sqrt{3}-\sqrt{5}} לרציונלי על-ידי הכפלת המונה והמכנה ב- \sqrt{3}+\sqrt{5}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}}
שקול את \left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{3}+\sqrt{5}\right). ניתן להמיר כפל להפרשי הריבועים באמצעות הכלל: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{3-5}
\sqrt{3} בריבוע. \sqrt{5} בריבוע.
\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{-2}
החסר את 5 מ- 3 כדי לקבל -2.
\frac{\sqrt{2}\sqrt{3}+\sqrt{2}\sqrt{5}}{-2}
השתמש בחוק הפילוג כדי להכפיל את \sqrt{2} ב- \sqrt{3}+\sqrt{5}.
\frac{\sqrt{6}+\sqrt{2}\sqrt{5}}{-2}
כדי להכפיל \sqrt{2} ו\sqrt{3}, הכפל את המספרים תחת השורש הריבועי.
\frac{\sqrt{6}+\sqrt{10}}{-2}
כדי להכפיל \sqrt{2} ו\sqrt{5}, הכפל את המספרים תחת השורש הריבועי.
\frac{-\sqrt{6}-\sqrt{10}}{2}
הכפל את המונה ואת המכנה ב- -1.
דוגמאות
משוואה ממעלה שנייה
{ x } ^ { 2 } - 4 x - 5 = 0
טריגונומטריה
4 \sin \theta \cos \theta = 2 \sin \theta
משוואה לינארית
y = 3x + 4
אריתמטיקה
699 * 533
מטריצה
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
משוואה בו-זמנית
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
גזירה
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
אינטגרציה
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
גבולות
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}