דילוג לתוכן העיקרי
פרק לגורמים
Tick mark Image
הערך
Tick mark Image
גרף

בעיות דומות מחיפוש באינטרנט

שתף

a+b=-1 ab=-2=-2
פרק את הביטוי לגורמים על-ידי קיבוץ. תחילה, יש לשכתב את הביטוי כ- -x^{2}+ax+bx+2. כדי למצוא את a ו- b, הגדר מערכת לפתרון.
a=1 b=-2
מאחר ש- ab הוא שלילי, ל- a ול- b יש סימנים הפוכים. מאחר ש- a+b הוא שלילי, למספר השלילי יש ערך מוחלט גדול יותר מהחיובי. הצמד היחיד מסוג זה הוא פתרון המערכת.
\left(-x^{2}+x\right)+\left(-2x+2\right)
שכתב את ‎-x^{2}-x+2 כ- ‎\left(-x^{2}+x\right)+\left(-2x+2\right).
x\left(-x+1\right)+2\left(-x+1\right)
הוצא את הגורם המשותף x בקבוצה הראשונה ואת 2 בקבוצה השניה.
\left(-x+1\right)\left(x+2\right)
הוצא את האיבר המשותף -x+1 באמצעות חוק הפילוג.
-x^{2}-x+2=0
ניתן לפרק פולינום ריבועי לגורמים באמצעות הטרנספורמציה ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎, כאשר x_{1} ו- x_{2} הם הפתרונות של המשוואה הריבועית ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
ניתן לפתור את כל המשוואות בצורה ax^{2}+bx+c=0 באמצעות הנוסחה הריבועית: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. הנוסחה הריבועית נותנת שני פתרונות, אחד כאשר ± כולל פעולת חיבור ואחד כאשר הוא כולל פעולת חיסור.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
הכפל את ‎-4 ב- ‎-1.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
הכפל את ‎4 ב- ‎2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
הוסף את ‎1 ל- ‎8.
x=\frac{-\left(-1\right)±3}{2\left(-1\right)}
הוצא את השורש הריבועי של 9.
x=\frac{1±3}{2\left(-1\right)}
ההופכי של ‎-1 הוא ‎1.
x=\frac{1±3}{-2}
הכפל את ‎2 ב- ‎-1.
x=\frac{4}{-2}
כעת פתור את המשוואה x=\frac{1±3}{-2} כאשר ± כולל סימן חיבור. הוסף את ‎1 ל- ‎3.
x=-2
חלק את ‎4 ב- ‎-2.
x=-\frac{2}{-2}
כעת פתור את המשוואה x=\frac{1±3}{-2} כאשר ± כולל סימן חיסור. החסר ‎3 מ- ‎1.
x=1
חלק את ‎-2 ב- ‎-2.
-x^{2}-x+2=-\left(x-\left(-2\right)\right)\left(x-1\right)
פרק את הביטוי המקורי לגורמים באמצעות ‎ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right)‎. השתמש ב- ‎-2 במקום x_{1} וב- ‎1 במקום x_{2}.
-x^{2}-x+2=-\left(x+2\right)\left(x-1\right)
פשט את כל הביטויים של הצורה ‎p-\left(-q\right)‎ ל- p+q.