અવયવ
\left(x-4\right)\left(x-3\right)
મૂલ્યાંકન કરો
\left(x-4\right)\left(x-3\right)
ગ્રાફ
શેર કરો
ક્લિપબોર્ડ પર કૉપિ કરી
a+b=-7 ab=1\times 12=12
સમૂહીકરણ કરીને પદાવલિનું અવયવ પાડો.પ્રથમ, આ પદાવલિને x^{2}+ax+bx+12 તરીકે ફરીથી લખવાની જરૂર છે. a અને b ને શોધવા માટે, ઉકેલી શકાય તે માટે સિસ્ટમ સેટ કરો.
-1,-12 -2,-6 -3,-4
ab ઘનાત્મક હોવાથી, a અને b સમાન ચિહ્ન ધરાવે છે. a+b ઋણાત્મક હોવાથી, બંને a અને b ઋણાત્મક છે. આવી બધી પૂર્ણાંક જોડીની સૂચી બનાવો જે ઉત્પાદન 12 આપે છે.
-1-12=-13 -2-6=-8 -3-4=-7
દરેક જોડી માટે સરવાળાની ગણતરી કરો.
a=-4 b=-3
સમાધાન એ જોડી છે જે સરવાળો -7 આપે છે.
\left(x^{2}-4x\right)+\left(-3x+12\right)
x^{2}-7x+12 ને \left(x^{2}-4x\right)+\left(-3x+12\right) તરીકે ફરીથી લખો.
x\left(x-4\right)-3\left(x-4\right)
પ્રથમ સમૂહમાં x અને બીજા સમૂહમાં -3 ના અવયવ પાડો.
\left(x-4\right)\left(x-3\right)
પ્રત્યેક ગુણધર્મનો ઉપયોગ કરીને સામાન્ય પદ x-4 ના અવયવ પાડો.
x^{2}-7x+12=0
વર્ગાત્મક બહુપદીના ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) રૂપાંતરણનો ઉપયોગ કરીને અવયવ પાડી શકાય, જ્યા x_{1} અને x_{2} ax^{2}+bx+c=0 દ્વિઘાત સમીકરણનાં ઉકેલો છે.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 12}}{2}
ax^{2}+bx+c=0 પ્રપત્રના બધા સમીકરણો ચતુર્વર્ગીય સૂત્ર: \frac{-b±\sqrt{b^{2}-4ac}}{2a} નો ઉપયોગ કરી ઉકેલી શકાય છે. ચતુર્વર્ગીય સૂત્ર બે નિરાકરણો આપે છે, એક જ્યારે ± સરવાલો હોય અને એક જ્યારે તે બાદબાકી હોય.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 12}}{2}
વર્ગ -7.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2}
12 ને -4 વાર ગુણાકાર કરો.
x=\frac{-\left(-7\right)±\sqrt{1}}{2}
-48 માં 49 ઍડ કરો.
x=\frac{-\left(-7\right)±1}{2}
1 નો વર્ગ મૂળ લો.
x=\frac{7±1}{2}
-7 નો વિરોધી 7 છે.
x=\frac{8}{2}
હવે x=\frac{7±1}{2} સમીકરણને ઉકેલો, જ્યારે ± ધન હોય. 1 માં 7 ઍડ કરો.
x=4
8 નો 2 થી ભાગાકાર કરો.
x=\frac{6}{2}
હવે x=\frac{7±1}{2} સમીકરણને ઉકેલો, જ્યારે ± ઋણ હોય. 7 માંથી 1 ને ઘટાડો.
x=3
6 નો 2 થી ભાગાકાર કરો.
x^{2}-7x+12=\left(x-4\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) નો ઉપયોગ કરીને મૂળ શબ્દયોજના અવયવ પાડો. x_{1} ને બદલે 4 અને x_{2} ને બદલે 3 મૂકો.