Skip to main content
Microsoft
|
Math Solver
Solve
Play
Practice
Download
Solve
Practice
Play
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
sine, x, minus, c, o, s, left parenthesis, x, right parenthesis, equals, 0
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Solve for x
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
Graph
Graph Both Sides in 2D
Graph in 2D
Quiz
Trigonometry
5 problems similar to:
\sin ( x ) - cos ( x ) = 0
Similar Problems from Web Search
Solve \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} ?
https://socratic.org/questions/58f66b0eb72cff6d065f28c0
\displaystyle{x}=\frac{\pi}{{4}}+{n}\pi Explanation: We have: \displaystyle{\sin{{x}}}-{\cos{{x}}}={0} Which we can rearrange as follows: \displaystyle\therefore{\sin{{x}}}={\cos{{x}}} ...
I confused with trigonometry. \sin x - \cos x = 1
https://math.stackexchange.com/q/2837121
\frac{1}{\sqrt2}\sin{x}-\frac{1}{\sqrt2}\cos{x}=\frac{1}{\sqrt2} or \sin\left(x-45^{\circ}\right)=\sin45^{\circ}, which gives x-45^{\circ}=45^{\circ}+360^{\circ}k, where k is an integer ...
How do you solve \displaystyle{\sin{{2}}}{x}-{\cos{{x}}}={0} ?
https://socratic.org/questions/how-do-you-solve-sin2x-cosx-0
\displaystyle{x}=\frac{\pi}{{2}},\frac{{{3}\pi}}{{2}},\frac{\pi}{{6}},\frac{{{5}\pi}}{{6}} Explanation: Before we solve, we need to note an identity: \displaystyle{\sin{{2}}}{x}={2}{\sin{{x}}}{\cos{{x}}} ...
How to solve \sin 3x - \cos x = 0
https://www.quora.com/How-do-I-solve-sin-3x-cos-x-0
\begin{align} &\ \ \sin 3x - \cos x = 0 \\ \Leftrightarrow &\ \ \sin 3x - \sin \left( \dfrac{\pi}{2}-x \right) = 0 \\ \Leftrightarrow &\ \ 2 \cos\dfrac{3x + \left( \frac{\pi}{2}-x \right)}{2} \sin\dfrac{3x - \left( \frac{\pi}{2}-x \right)}{2} = 0 \\ \Leftrightarrow &\ \ 2 \cos \dfrac{2x + \frac{\pi}{2}}{2} \sin \dfrac{4x - \frac{\pi}{2}}{2} = 0 \\ \Leftrightarrow &\ \ \dfrac{2x + \frac{\pi}{2}}{2} = \dfrac{\pi}{2} + k\pi, k \in \mathbb{Z} \text{ or } \dfrac{4x - \frac{\pi}{2}}{2} = k\pi, k \in \mathbb{Z} \\ \Leftrightarrow &\ \ x = \dfrac{\pi}{4} + k\pi, k \in \mathbb{Z} \text{ or } x = \dfrac{\pi}{8} + \dfrac{k\pi}{2}, k \in \mathbb{Z} \end{align}
Find the general solution to \sin(4x)-\cos(x)=0 [closed]
https://math.stackexchange.com/questions/1735307/find-the-general-solution-to-sin4x-cosx-0
\sin(4x)−\cos(x)=0 2\sin(2x)\cos(2x)-\cos(x)=0 4\sin(x)\cos(x)(1-2\sin^2(x))-\cos(x)=0 One possible solution is \cos(x)=0 4\sin(x)(1-2\sin^2(x))=1 8\sin^3(x)-4\sin(x)+1=0 Now, let \sin(x)=m ...
Prove that \sin x - x\cos x = 0 has only one solution in [-\frac{\pi}{2}, \frac{\pi}{2}]
https://math.stackexchange.com/q/1355080/166535
Let f(x)=\sin x-x\cos x. You have f'(x)=x\sin x. Since \sin x has the same sign as x for x\in[-\pi/2,\pi/2], we know that f'(x)\geq0 in this interval and f'(x)>0 for x\in[-\pi/2,\pi/2]\setminus\{0\} ...
More Items
Share
Copy
Copied to clipboard
Similar Problems
\cos ( 3x + \pi ) = 0.5
\sin ( x ) = 1
\sin ( x ) - cos ( x ) = 0
\sin ( x ) + 2 = 3
{ \tan ( x ) } ^ {2} = 4
Back to top