Skip to main content
Microsoft

Math Solver
Solve
Practice
Play
Topics
PreAlgebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
Solve
Practice
Play
Topics
PreAlgebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Inputs
Trigonometry Inputs
Calculus Inputs
Matrix Inputs
Basic
algebra
trigonometry
calculus
statistics
matrices
Characters
Evaluate
0
Differentiate w.r.t. x
0
Quiz
Differentiation
5 problems similar to:
\frac { d } { d x } ( 2 )
Similar Problems from Web Search
let f be a differentiable function. Compute \frac{d}{dx}g(2), where g(x) = \frac{f(2x)}{x}.
https://math.stackexchange.com/questions/2351494/letfbeadifferentiablefunctioncomputefracddxg2wheregx
You have an extra 4 in the numerator here: i know that : \dfrac{d}{dx}g(2)=\dfrac{4(\dfrac{d}{dx}f(4))4f(4)}{4} If g(x) = \dfrac{f(2x)}x, then \begin{align*} \frac d{dx} g(x) &= \frac d{dx} ...
How to rewrite \frac{d}{d(x+c)}? [closed]
https://math.stackexchange.com/questions/1376627/howtorewritefracddxc
Use the chain rule. Define u = x + c then use the fact that \frac{d\cdot}{dx} = \frac{du}{dx} \frac{d\cdot}{du} where the \cdot represents any function, so \frac{df}{dx} = \frac{du}{dx} \frac{df}{du} ...
What does is the meaning of \frac{d}{dx}+x in (\frac{d}{dx}+x)y=0?
https://math.stackexchange.com/q/1590756
The symbols d/dx and x should both be interpreted as linear operators acting on a vector space that the unknown function y belongs to. The sum of linear operators is welldefined and that is ...
Intuitive explanation of \frac{\mathrm{d}}{\mathrm{d}x}=0?
https://math.stackexchange.com/questions/2894024/intuitiveexplanationoffracmathrmdmathrmdx0
Not sure about the problem but the strength of the electrical field, E, depends on your distance from it, which I assume is x. \frac{dE}{dx} then, is how much the strength of the field changes ...
Question about the chain rule.
https://math.stackexchange.com/q/2940216
Suppose we add an infinitesimal to x : x_1=x_0+\Delta x . What happens to y ? By definition, the derivative tells us how much a function changes relative to changes in its input: the change ...
Spectrum of the derivative operator
https://math.stackexchange.com/questions/2117107/spectrumofthederivativeoperator
\newcommand{\id}{I} As it was mentioned in the comments, the domain where you defined the operator is not correct  If you take C^1functions with derivatives in L^2 the domain will be "too ...
More Items
Share
Copy
Copied to clipboard
Similar Problems
\frac { d } { d x } ( 2 )
\frac { d } { d x } ( 4 x )
\frac { d } { d x } ( 6 x ^ 2 )
\frac { d } { d x } ( 3x+7 )
\frac { d } { d a } ( 6a ( a 2) )
\frac { d } { d z } ( \frac{z+3}{2z4} )
Back to top