Microsoft Math Solver
Solve
Practice
Download
Solve
Practice
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Download
Topics
Pre-Algebra
Mean
Mode
Greatest Common Factor
Least Common Multiple
Order of Operations
Fractions
Mixed Fractions
Prime Factorization
Exponents
Radicals
Algebra
Combine Like Terms
Solve for a Variable
Factor
Expand
Evaluate Fractions
Linear Equations
Quadratic Equations
Inequalities
Systems of Equations
Matrices
Trigonometry
Simplify
Evaluate
Graphs
Solve Equations
Calculus
Derivatives
Integrals
Limits
Algebra Calculator
Trigonometry Calculator
Calculus Calculator
Matrix Calculator
Solve
algebra
trigonometry
statistics
calculus
matrices
variables
list
Calculate Determinant
-7
−
7
View solution steps
Steps Using Diagonal Rule
\begin{bmatrix} \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \end{bmatrix}
[
2
5
3
4
]
Find the determinant of the matrix.
Find the determinant of the matrix.
det(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))
d
e
t
(
(
2
5
3
4
)
)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
For the
2
×
2
matrix
(
a
c
b
d
)
, the determinant is
a
d
−
b
c
.
2\times 4-3\times 5
2
×
4
−
3
×
5
Multiply 2 times 4.
Multiply
2
times
4
.
8-3\times 5
8
−
3
×
5
Multiply 3 times 5.
Multiply
3
times
5
.
8-15
8
−
1
5
Subtract 15 from 8.
Subtract
1
5
from
8
.
-7
−
7
Evaluate
\left(\begin{matrix}2&3\\5&4\end{matrix}\right)
(
2
5
3
4
)
Quiz
Matrix
5 problems similar to:
\begin{bmatrix} \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \end{bmatrix}
[
2
5
3
4
]
Share
Copy
Copied to clipboard
det(\left(\begin{matrix}2&3\\5&4\end{matrix}\right))
Find the determinant of the matrix.
2\times 4-3\times 5
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the determinant is ad-bc.
8-3\times 5
Multiply 2 times 4.
8-15
Multiply 3 times 5.
-7
Subtract 15 from 8.
Similar Problems
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
[
2
5
3
4
]
6 \times \left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right]
6
×
[
2
5
3
4
]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
[
2
5
3
4
]
[
2
−
1
0
1
3
5
]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] + \left[ \begin{array} { l l l } { 2 } & { 0 } \\ { -1 } & { 1 } \end{array} \right]
[
2
5
3
4
]
+
[
2
−
1
0
1
]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] - \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
[
2
5
3
4
]
−
[
0
1
3
5
]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \times \left[ \begin{array} { l l l } { 0 } & { 3 } \\ { 1 } & { 5 } \end{array} \right]
[
2
5
3
4
]
×
[
0
1
3
5
]
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] ^ 2
[
2
5
3
4
]
2
Back to top