Διαφόριση ως προς y
\frac{14}{15\sqrt[15]{y}}
Υπολογισμός
y^{\frac{14}{15}}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\sqrt[3]{y}\frac{\mathrm{d}}{\mathrm{d}y}(y^{\frac{3}{5}})+y^{\frac{3}{5}}\frac{\mathrm{d}}{\mathrm{d}y}(\sqrt[3]{y})
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του γινομένου των δύο συναρτήσεων είναι η πρώτη συνάρτηση επί την παράγωγο της δεύτερης συν τη δεύτερη συνάρτηση επί την παράγωγο της πρώτης.
\sqrt[3]{y}\times \frac{3}{5}y^{\frac{3}{5}-1}+y^{\frac{3}{5}}\times \frac{1}{3}y^{\frac{1}{3}-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\sqrt[3]{y}\times \frac{3}{5}y^{-\frac{2}{5}}+y^{\frac{3}{5}}\times \frac{1}{3}y^{-\frac{2}{3}}
Απλοποιήστε.
\frac{3}{5}y^{\frac{1}{3}-\frac{2}{5}}+\frac{1}{3}y^{\frac{3}{5}-\frac{2}{3}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{3}{5}y^{-\frac{1}{15}}+\frac{1}{3}y^{-\frac{1}{15}}
Απλοποιήστε.
y^{\frac{14}{15}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό \frac{1}{3} και τον αριθμό \frac{3}{5} για να λάβετε τον αριθμό \frac{14}{15}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}