Λύση ως προς x
\left\{\begin{matrix}x=y\cot(ϕ)\text{, }&\exists n_{3}\in \mathrm{Z}\text{ : }\left(ϕ>\frac{\pi n_{3}}{2}\text{ and }ϕ<\frac{\pi n_{3}}{2}+\frac{\pi }{2}\right)\\x\in \mathrm{R}\text{, }&y=0\text{ and }\exists n_{2}\in \mathrm{Z}\text{ : }ϕ=\pi n_{2}\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }ϕ=\pi n_{1}+\frac{\pi }{2}\end{matrix}\right,
Λύση ως προς y
y=x\tan(ϕ)
\nexists n_{1}\in \mathrm{Z}\text{ : }ϕ=\pi n_{1}+\frac{\pi }{2}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x\tan(ϕ)=y
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\tan(ϕ)x=y
Η εξίσωση είναι σε τυπική μορφή.
\frac{\tan(ϕ)x}{\tan(ϕ)}=\frac{y}{\tan(ϕ)}
Διαιρέστε και τις δύο πλευρές με \tan(ϕ).
x=\frac{y}{\tan(ϕ)}
Η διαίρεση με το \tan(ϕ) αναιρεί τον πολλαπλασιασμό με το \tan(ϕ).
x=y\cot(ϕ)
Διαιρέστε το y με το \tan(ϕ).
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}