Λύση ως προς L (complex solution)
\left\{\begin{matrix}L=\frac{y}{3k^{2}}\text{, }&k\neq 0\\L\in \mathrm{C}\text{, }&y=0\text{ and }k=0\end{matrix}\right,
Λύση ως προς L
\left\{\begin{matrix}L=\frac{y}{3k^{2}}\text{, }&k\neq 0\\L\in \mathrm{R}\text{, }&y=0\text{ and }k=0\end{matrix}\right,
Λύση ως προς k (complex solution)
\left\{\begin{matrix}k=-\frac{L^{-\frac{1}{2}}\sqrt{3y}}{3}\text{; }k=\frac{L^{-\frac{1}{2}}\sqrt{3y}}{3}\text{, }&L\neq 0\\k\in \mathrm{C}\text{, }&y=0\text{ and }L=0\end{matrix}\right,
Λύση ως προς k
\left\{\begin{matrix}k=\frac{\sqrt{\frac{3y}{L}}}{3}\text{; }k=-\frac{\sqrt{\frac{3y}{L}}}{3}\text{, }&\left(y\geq 0\text{ and }L>0\right)\text{ or }\left(y\leq 0\text{ and }L<0\right)\\k\in \mathrm{R}\text{, }&y=0\text{ and }L=0\end{matrix}\right,
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
3Lk^{2}=y
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
3k^{2}L=y
Η εξίσωση είναι σε τυπική μορφή.
\frac{3k^{2}L}{3k^{2}}=\frac{y}{3k^{2}}
Διαιρέστε και τις δύο πλευρές με 3k^{2}.
L=\frac{y}{3k^{2}}
Η διαίρεση με το 3k^{2} αναιρεί τον πολλαπλασιασμό με το 3k^{2}.
3Lk^{2}=y
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
3k^{2}L=y
Η εξίσωση είναι σε τυπική μορφή.
\frac{3k^{2}L}{3k^{2}}=\frac{y}{3k^{2}}
Διαιρέστε και τις δύο πλευρές με 3k^{2}.
L=\frac{y}{3k^{2}}
Η διαίρεση με το 3k^{2} αναιρεί τον πολλαπλασιασμό με το 3k^{2}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}