Λύση ως προς n (complex solution)
\left\{\begin{matrix}n=\frac{\ln(y)-\ln(105)}{\ln(x)}+\frac{2\pi n_{1}i}{\ln(x)}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\n\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(x=1\text{ and }y=105\right)\end{matrix}\right,
Λύση ως προς x (complex solution)
x=e^{\frac{Im(n)arg(y)+iRe(n)arg(y)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}-\frac{2\pi n_{1}iRe(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}-\frac{2\pi n_{1}Im(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}\times \left(\frac{|y|}{105}\right)^{\frac{Re(n)-iIm(n)}{\left(Re(n)\right)^{2}+\left(Im(n)\right)^{2}}}
n_{1}\in \mathrm{Z}
Λύση ως προς n
\left\{\begin{matrix}n=\frac{\ln(y)-\ln(105)}{\ln(x)}\text{, }&y>0\text{ and }x\neq 1\text{ and }x>0\\n\in \mathrm{R}\text{, }&\left(x=1\text{ and }y=105\right)\text{ or }\left(x=-1\text{ and }y=-105\text{ and }Denominator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=1\right)\\n>0\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Λύση ως προς x
\left\{\begin{matrix}x=\left(\frac{y}{105}\right)^{\frac{1}{n}}\text{, }&\left(Numerator(n)\text{bmod}2=1\text{ and }Denominator(n)\text{bmod}2=1\text{ and }y<0\text{ and }\left(\frac{y}{105}\right)^{\frac{1}{n}}\neq 0\right)\text{ or }\left(\left(\frac{y}{105}\right)^{\frac{1}{n}}<0\text{ and }y>0\text{ and }n\neq 0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(y=0\text{ and }n>0\right)\text{ or }\left(\left(\frac{y}{105}\right)^{\frac{1}{n}}>0\text{ and }y>0\text{ and }n\neq 0\right)\\x=-\left(\frac{y}{105}\right)^{\frac{1}{n}}\text{, }&\left(y<0\text{ and }Numerator(n)\text{bmod}2=1\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\text{ and }\left(\frac{y}{105}\right)^{\frac{1}{n}}\neq 0\right)\text{ or }\left(y>0\text{ and }n\neq 0\text{ and }\left(\frac{y}{105}\right)^{\frac{1}{n}}>0\text{ and }Numerator(n)\text{bmod}2=0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }\left(Numerator(n)\text{bmod}2=0\text{ and }y=0\text{ and }n>0\right)\text{ or }\left(y>0\text{ and }n\neq 0\text{ and }\left(\frac{y}{105}\right)^{\frac{1}{n}}<0\text{ and }Numerator(n)\text{bmod}2=0\right)\\x\neq 0\text{, }&n=0\text{ and }y=105\end{matrix}\right,
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}