Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

-2x-x^{2}+4-4=0
Συνδυάστε το x και το -3x για να λάβετε -2x.
-2x-x^{2}=0
Αφαιρέστε 4 από 4 για να λάβετε 0.
x\left(-2-x\right)=0
Παραγοντοποιήστε το x.
x=0 x=-2
Για να βρείτε λύσεις εξίσωσης, να λύσετε x=0 και -2-x=0.
-2x-x^{2}+4-4=0
Συνδυάστε το x και το -3x για να λάβετε -2x.
-2x-x^{2}=0
Αφαιρέστε 4 από 4 για να λάβετε 0.
-x^{2}-2x=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2\left(-1\right)}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με -1, το b με -2 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±2}{2\left(-1\right)}
Λάβετε την τετραγωνική ρίζα του \left(-2\right)^{2}.
x=\frac{2±2}{2\left(-1\right)}
Το αντίθετο ενός αριθμού -2 είναι 2.
x=\frac{2±2}{-2}
Πολλαπλασιάστε το 2 επί -1.
x=\frac{4}{-2}
Λύστε τώρα την εξίσωση x=\frac{2±2}{-2} όταν το ± είναι συν. Προσθέστε το 2 και το 2.
x=-2
Διαιρέστε το 4 με το -2.
x=\frac{0}{-2}
Λύστε τώρα την εξίσωση x=\frac{2±2}{-2} όταν το ± είναι μείον. Αφαιρέστε 2 από 2.
x=0
Διαιρέστε το 0 με το -2.
x=-2 x=0
Η εξίσωση έχει πλέον λυθεί.
-2x-x^{2}+4-4=0
Συνδυάστε το x και το -3x για να λάβετε -2x.
-2x-x^{2}=0
Αφαιρέστε 4 από 4 για να λάβετε 0.
-x^{2}-2x=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\frac{-x^{2}-2x}{-1}=\frac{0}{-1}
Διαιρέστε και τις δύο πλευρές με -1.
x^{2}+\left(-\frac{2}{-1}\right)x=\frac{0}{-1}
Η διαίρεση με το -1 αναιρεί τον πολλαπλασιασμό με το -1.
x^{2}+2x=\frac{0}{-1}
Διαιρέστε το -2 με το -1.
x^{2}+2x=0
Διαιρέστε το 0 με το -1.
x^{2}+2x+1^{2}=1^{2}
Διαιρέστε το 2, τον συντελεστή του όρου x, με το 2 για να λάβετε 1. Στη συνέχεια, προσθέστε το τετράγωνο του 1 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+2x+1=1
Υψώστε το 1 στο τετράγωνο.
\left(x+1\right)^{2}=1
Παραγον x^{2}+2x+1. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{1}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+1=1 x+1=-1
Απλοποιήστε.
x=0 x=-2
Αφαιρέστε 1 και από τις δύο πλευρές της εξίσωσης.