Υπολογισμός
\frac{x^{2}}{3}
Διαφόριση ως προς x
\frac{2x}{3}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{xx}{3}
Έκφραση του \frac{x}{3}x ως ενιαίου κλάσματος.
\frac{x^{2}}{3}
Πολλαπλασιάστε x και x για να λάβετε x^{2}.
\frac{1}{3}x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})+x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3}x^{1})
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του γινομένου των δύο συναρτήσεων είναι η πρώτη συνάρτηση επί την παράγωγο της δεύτερης συν τη δεύτερη συνάρτηση επί την παράγωγο της πρώτης.
\frac{1}{3}x^{1}x^{1-1}+x^{1}\times \frac{1}{3}x^{1-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{1}{3}x^{1}x^{0}+x^{1}\times \frac{1}{3}x^{0}
Απλοποιήστε.
\frac{1}{3}x^{1}+\frac{1}{3}x^{1}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{1+1}{3}x^{1}
Συνδυάστε όμοιους όρους.
\frac{2}{3}x^{1}
Προσθέστε το \frac{1}{3} και το \frac{1}{3} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\frac{2}{3}x
Για κάθε όρο t, t^{1}=t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}