Λύση ως προς x (complex solution)
x=\frac{-3\sqrt{3}i-3}{2}\approx -1,5-2,598076211i
x=3
x=\frac{-3+3\sqrt{3}i}{2}\approx -1,5+2,598076211i
Λύση ως προς x
x=3
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{3}+9x=9x+27
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{2} με το 18x+54.
x^{3}+9x-9x=27
Αφαιρέστε 9x και από τις δύο πλευρές.
x^{3}=27
Συνδυάστε το 9x και το -9x για να λάβετε 0.
x^{3}-27=0
Αφαιρέστε 27 και από τις δύο πλευρές.
±27,±9,±3,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -27 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=3
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+3x+9=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}-27 με το x-3 για να λάβετε x^{2}+3x+9. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 3 για b και 9 για c στον πολυωνυμικό τύπου.
x=\frac{-3±\sqrt{-27}}{2}
Κάντε τους υπολογισμούς.
x=\frac{-3i\sqrt{3}-3}{2} x=\frac{-3+3i\sqrt{3}}{2}
Επιλύστε την εξίσωση x^{2}+3x+9=0 όταν το ± είναι συν και όταν ± είναι μείον.
x=3 x=\frac{-3i\sqrt{3}-3}{2} x=\frac{-3+3i\sqrt{3}}{2}
Λίστα όλων των λύσεων που βρέθηκαν.
x^{3}+9x=9x+27
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το \frac{1}{2} με το 18x+54.
x^{3}+9x-9x=27
Αφαιρέστε 9x και από τις δύο πλευρές.
x^{3}=27
Συνδυάστε το 9x και το -9x για να λάβετε 0.
x^{3}-27=0
Αφαιρέστε 27 και από τις δύο πλευρές.
±27,±9,±3,±1
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή -27 όρων και q διαιρείται τον αρχικό συντελεστή 1. Λίστα όλων των υποψηφίων \frac{p}{q}.
x=3
Βρείτε μία τέτοια ρίζα, δοκιμάζοντας όλες τις ακέραιες τιμές, ξεκινώντας από τη μικρότερη κατά απόλυτη τιμή. Αν δεν βρεθούν ακέραιες ρίζες, δοκιμάστε κλάσματα.
x^{2}+3x+9=0
Κατά παράγοντα θεώρημα, x-k είναι ένας συντελεστής του πολυωνύμου για κάθε ριζικό k. Διαιρέστε το x^{3}-27 με το x-3 για να λάβετε x^{2}+3x+9. Επίλυση της εξίσωσης όπου το αποτέλεσμα είναι ίσο με 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 9}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 3 για b και 9 για c στον πολυωνυμικό τύπου.
x=\frac{-3±\sqrt{-27}}{2}
Κάντε τους υπολογισμούς.
x\in \emptyset
Δεδομένου ότι η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν ορίζεται σε πραγματικό πεδίο, δεν υπάρχουν λύσεις.
x=3
Λίστα όλων των λύσεων που βρέθηκαν.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}