Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\left(x+6\right)\left(x^{2}+6x+8\right)
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 48 όρων και q διαιρείται τον αρχικό συντελεστή 1. Μία από αυτές τις ρίζες είναι η -6. Παραγοντοποιήστε το πολυώνυμο διαιρώντας το από το x+6.
a+b=6 ab=1\times 8=8
Υπολογίστε x^{2}+6x+8. Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+8. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,8 2,4
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 8.
1+8=9 2+4=6
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=2 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 6.
\left(x^{2}+2x\right)+\left(4x+8\right)
Γράψτε πάλι το x^{2}+6x+8 ως \left(x^{2}+2x\right)+\left(4x+8\right).
x\left(x+2\right)+4\left(x+2\right)
Παραγοντοποιήστε x στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(x+2\right)\left(x+4\right)
Παραγοντοποιήστε τον κοινό όρο x+2 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(x+2\right)\left(x+4\right)\left(x+6\right)
Γράψτε ξανά την πλήρη παραγοντοποιημένη παράσταση.