Παράγοντας
\left(x+2\right)\left(x+4\right)\left(x+6\right)
Υπολογισμός
\left(x+2\right)\left(x+4\right)\left(x+6\right)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\left(x+6\right)\left(x^{2}+6x+8\right)
Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 48 όρων και q διαιρείται τον αρχικό συντελεστή 1. Μία από αυτές τις ρίζες είναι η -6. Παραγοντοποιήστε το πολυώνυμο διαιρώντας το από το x+6.
a+b=6 ab=1\times 8=8
Υπολογίστε x^{2}+6x+8. Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+8. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,8 2,4
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 8.
1+8=9 2+4=6
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=2 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 6.
\left(x^{2}+2x\right)+\left(4x+8\right)
Γράψτε πάλι το x^{2}+6x+8 ως \left(x^{2}+2x\right)+\left(4x+8\right).
x\left(x+2\right)+4\left(x+2\right)
Παραγοντοποιήστε x στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(x+2\right)\left(x+4\right)
Παραγοντοποιήστε τον κοινό όρο x+2 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(x+2\right)\left(x+4\right)\left(x+6\right)
Γράψτε ξανά την πλήρη παραγοντοποιημένη παράσταση.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}