Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

a+b=-8 ab=1\times 15=15
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+15. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-15 -3,-5
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 15.
-1-15=-16 -3-5=-8
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-5 b=-3
Η λύση είναι το ζεύγος που δίνει άθροισμα -8.
\left(x^{2}-5x\right)+\left(-3x+15\right)
Γράψτε πάλι το x^{2}-8x+15 ως \left(x^{2}-5x\right)+\left(-3x+15\right).
x\left(x-5\right)-3\left(x-5\right)
Παραγοντοποιήστε x στο πρώτο και στο -3 της δεύτερης ομάδας.
\left(x-5\right)\left(x-3\right)
Παραγοντοποιήστε τον κοινό όρο x-5 χρησιμοποιώντας επιμεριστική ιδιότητα.
x^{2}-8x+15=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 15}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 15}}{2}
Υψώστε το -8 στο τετράγωνο.
x=\frac{-\left(-8\right)±\sqrt{64-60}}{2}
Πολλαπλασιάστε το -4 επί 15.
x=\frac{-\left(-8\right)±\sqrt{4}}{2}
Προσθέστε το 64 και το -60.
x=\frac{-\left(-8\right)±2}{2}
Λάβετε την τετραγωνική ρίζα του 4.
x=\frac{8±2}{2}
Το αντίθετο ενός αριθμού -8 είναι 8.
x=\frac{10}{2}
Λύστε τώρα την εξίσωση x=\frac{8±2}{2} όταν το ± είναι συν. Προσθέστε το 8 και το 2.
x=5
Διαιρέστε το 10 με το 2.
x=\frac{6}{2}
Λύστε τώρα την εξίσωση x=\frac{8±2}{2} όταν το ± είναι μείον. Αφαιρέστε 2 από 8.
x=3
Διαιρέστε το 6 με το 2.
x^{2}-8x+15=\left(x-5\right)\left(x-3\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 5 με το x_{1} και το 3 με το x_{2}.