Λύση ως προς x
x=10
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=-20 ab=100
Για να λύσετε την εξίσωση, παραγοντοποιήστε x^{2}-20x+100 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-10 b=-10
Η λύση είναι το ζεύγος που δίνει άθροισμα -20.
\left(x-10\right)\left(x-10\right)
Επανεγγραφή παραγοντοποιηθεί παράστασης \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που έχουν ληφθεί.
\left(x-10\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=10
Για να βρείτε τη λύση της εξίσωσης, λύστε το x-10=0.
a+b=-20 ab=1\times 100=100
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx+100. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,-100 -2,-50 -4,-25 -5,-20 -10,-10
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Εφόσον το a+b είναι αρνητικό, το a και οι b είναι αρνητικά. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 100.
-1-100=-101 -2-50=-52 -4-25=-29 -5-20=-25 -10-10=-20
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-10 b=-10
Η λύση είναι το ζεύγος που δίνει άθροισμα -20.
\left(x^{2}-10x\right)+\left(-10x+100\right)
Γράψτε πάλι το x^{2}-20x+100 ως \left(x^{2}-10x\right)+\left(-10x+100\right).
x\left(x-10\right)-10\left(x-10\right)
Παραγοντοποιήστε x στο πρώτο και στο -10 της δεύτερης ομάδας.
\left(x-10\right)\left(x-10\right)
Παραγοντοποιήστε τον κοινό όρο x-10 χρησιμοποιώντας επιμεριστική ιδιότητα.
\left(x-10\right)^{2}
Επαναδιατυπώστε την ως τετράγωνο διωνύμου.
x=10
Για να βρείτε τη λύση της εξίσωσης, λύστε το x-10=0.
x^{2}-20x+100=0
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 100}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -20 και το c με 100 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 100}}{2}
Υψώστε το -20 στο τετράγωνο.
x=\frac{-\left(-20\right)±\sqrt{400-400}}{2}
Πολλαπλασιάστε το -4 επί 100.
x=\frac{-\left(-20\right)±\sqrt{0}}{2}
Προσθέστε το 400 και το -400.
x=-\frac{-20}{2}
Λάβετε την τετραγωνική ρίζα του 0.
x=\frac{20}{2}
Το αντίθετο ενός αριθμού -20 είναι 20.
x=10
Διαιρέστε το 20 με το 2.
x^{2}-20x+100=0
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
\left(x-10\right)^{2}=0
Παραγον x^{2}-20x+100. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-10\right)^{2}}=\sqrt{0}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-10=0 x-10=0
Απλοποιήστε.
x=10 x=10
Προσθέστε 10 και στις δύο πλευρές της εξίσωσης.
x=10
Η εξίσωση έχει πλέον λυθεί. Οι λύσεις είναι ίδιες.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}