Παράγοντας
\left(x-15\right)\left(x+4\right)
Υπολογισμός
\left(x-15\right)\left(x+4\right)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=-11 ab=1\left(-60\right)=-60
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-60. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-15 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα -11.
\left(x^{2}-15x\right)+\left(4x-60\right)
Γράψτε πάλι το x^{2}-11x-60 ως \left(x^{2}-15x\right)+\left(4x-60\right).
x\left(x-15\right)+4\left(x-15\right)
Παραγοντοποιήστε x στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(x-15\right)\left(x+4\right)
Παραγοντοποιήστε τον κοινό όρο x-15 χρησιμοποιώντας επιμεριστική ιδιότητα.
x^{2}-11x-60=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-60\right)}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-\left(-11\right)±\sqrt{121-4\left(-60\right)}}{2}
Υψώστε το -11 στο τετράγωνο.
x=\frac{-\left(-11\right)±\sqrt{121+240}}{2}
Πολλαπλασιάστε το -4 επί -60.
x=\frac{-\left(-11\right)±\sqrt{361}}{2}
Προσθέστε το 121 και το 240.
x=\frac{-\left(-11\right)±19}{2}
Λάβετε την τετραγωνική ρίζα του 361.
x=\frac{11±19}{2}
Το αντίθετο ενός αριθμού -11 είναι 11.
x=\frac{30}{2}
Λύστε τώρα την εξίσωση x=\frac{11±19}{2} όταν το ± είναι συν. Προσθέστε το 11 και το 19.
x=15
Διαιρέστε το 30 με το 2.
x=-\frac{8}{2}
Λύστε τώρα την εξίσωση x=\frac{11±19}{2} όταν το ± είναι μείον. Αφαιρέστε 19 από 11.
x=-4
Διαιρέστε το -8 με το 2.
x^{2}-11x-60=\left(x-15\right)\left(x-\left(-4\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το 15 με το x_{1} και το -4 με το x_{2}.
x^{2}-11x-60=\left(x-15\right)\left(x+4\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}