Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x (complex solution)
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}-10x=-39
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x^{2}-10x-\left(-39\right)=-39-\left(-39\right)
Προσθέστε 39 και στις δύο πλευρές της εξίσωσης.
x^{2}-10x-\left(-39\right)=0
Η αφαίρεση του -39 από τον εαυτό έχει ως αποτέλεσμα 0.
x^{2}-10x+39=0
Αφαιρέστε -39 από 0.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 39}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με -10 και το c με 39 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 39}}{2}
Υψώστε το -10 στο τετράγωνο.
x=\frac{-\left(-10\right)±\sqrt{100-156}}{2}
Πολλαπλασιάστε το -4 επί 39.
x=\frac{-\left(-10\right)±\sqrt{-56}}{2}
Προσθέστε το 100 και το -156.
x=\frac{-\left(-10\right)±2\sqrt{14}i}{2}
Λάβετε την τετραγωνική ρίζα του -56.
x=\frac{10±2\sqrt{14}i}{2}
Το αντίθετο ενός αριθμού -10 είναι 10.
x=\frac{10+2\sqrt{14}i}{2}
Λύστε τώρα την εξίσωση x=\frac{10±2\sqrt{14}i}{2} όταν το ± είναι συν. Προσθέστε το 10 και το 2i\sqrt{14}.
x=5+\sqrt{14}i
Διαιρέστε το 10+2i\sqrt{14} με το 2.
x=\frac{-2\sqrt{14}i+10}{2}
Λύστε τώρα την εξίσωση x=\frac{10±2\sqrt{14}i}{2} όταν το ± είναι μείον. Αφαιρέστε 2i\sqrt{14} από 10.
x=-\sqrt{14}i+5
Διαιρέστε το 10-2i\sqrt{14} με το 2.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Η εξίσωση έχει πλέον λυθεί.
x^{2}-10x=-39
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}-10x+\left(-5\right)^{2}=-39+\left(-5\right)^{2}
Διαιρέστε το -10, τον συντελεστή του όρου x, με το 2 για να λάβετε -5. Στη συνέχεια, προσθέστε το τετράγωνο του -5 και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-10x+25=-39+25
Υψώστε το -5 στο τετράγωνο.
x^{2}-10x+25=-14
Προσθέστε το -39 και το 25.
\left(x-5\right)^{2}=-14
Παραγον x^{2}-10x+25. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-14}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-5=\sqrt{14}i x-5=-\sqrt{14}i
Απλοποιήστε.
x=5+\sqrt{14}i x=-\sqrt{14}i+5
Προσθέστε 5 και στις δύο πλευρές της εξίσωσης.