Λύση ως προς x
x=-4
x=1
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}+3x-4=0
Αφαιρέστε 4 και από τις δύο πλευρές.
a+b=3 ab=-4
Για την επίλυση της εξίσωσης, παραγοντοποιήστε την παράσταση x^{2}+3x-4 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα που θα επιλυθεί.
-1,4 -2,2
Δεδομένου ότι η ab είναι αρνητική, a και b έχουν τα αντίθετα σημάδια. Επειδή η a+b είναι θετική, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από την αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -4.
-1+4=3 -2+2=0
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-1 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 3.
\left(x-1\right)\left(x+4\right)
Η επανεγγραφή της παράστασης παραγοντοποιήθηκε \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που λήφθηκαν.
x=1 x=-4
Για να βρείτε λύσεις εξίσωσης, λύστε x-1=0 και x+4=0.
x^{2}+3x-4=0
Αφαιρέστε 4 και από τις δύο πλευρές.
a+b=3 ab=1\left(-4\right)=-4
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-4. Για να βρείτε a και b, ρυθμίστε ένα σύστημα που θα επιλυθεί.
-1,4 -2,2
Δεδομένου ότι η ab είναι αρνητική, a και b έχουν τα αντίθετα σημάδια. Επειδή η a+b είναι θετική, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από την αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -4.
-1+4=3 -2+2=0
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-1 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 3.
\left(x^{2}-x\right)+\left(4x-4\right)
Γράψτε πάλι το x^{2}+3x-4 ως \left(x^{2}-x\right)+\left(4x-4\right).
x\left(x-1\right)+4\left(x-1\right)
Παραγοντοποιήστε το x στην πρώτη και το 4 στη δεύτερη ομάδα.
\left(x-1\right)\left(x+4\right)
Παραγοντοποιήστε τον κοινό όρο x-1 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=1 x=-4
Για να βρείτε λύσεις εξίσωσης, λύστε x-1=0 και x+4=0.
x^{2}+3x=4
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x^{2}+3x-4=4-4
Αφαιρέστε 4 και από τις δύο πλευρές της εξίσωσης.
x^{2}+3x-4=0
Η αφαίρεση του 4 από τον εαυτό έχει ως αποτέλεσμα 0.
x=\frac{-3±\sqrt{3^{2}-4\left(-4\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με 3 και το c με -4 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-4\right)}}{2}
Υψώστε το 3 στο τετράγωνο.
x=\frac{-3±\sqrt{9+16}}{2}
Πολλαπλασιάστε το -4 επί -4.
x=\frac{-3±\sqrt{25}}{2}
Προσθέστε το 9 και το 16.
x=\frac{-3±5}{2}
Λάβετε την τετραγωνική ρίζα του 25.
x=\frac{2}{2}
Λύστε τώρα την εξίσωση x=\frac{-3±5}{2} όταν το ± είναι συν. Προσθέστε το -3 και το 5.
x=1
Διαιρέστε το 2 με το 2.
x=-\frac{8}{2}
Λύστε τώρα την εξίσωση x=\frac{-3±5}{2} όταν το ± είναι μείον. Αφαιρέστε 5 από -3.
x=-4
Διαιρέστε το -8 με το 2.
x=1 x=-4
Η εξίσωση έχει πλέον λυθεί.
x^{2}+3x=4
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=4+\left(\frac{3}{2}\right)^{2}
Διαιρέστε το 3, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{3}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{3}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+3x+\frac{9}{4}=4+\frac{9}{4}
Υψώστε το \frac{3}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+3x+\frac{9}{4}=\frac{25}{4}
Προσθέστε το 4 και το \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{25}{4}
Παραγοντοποιήστε το x^{2}+3x+\frac{9}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποιηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{3}{2}=\frac{5}{2} x+\frac{3}{2}=-\frac{5}{2}
Απλοποιήστε.
x=1 x=-4
Αφαιρέστε \frac{3}{2} και από τις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}