Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}+2x-7-13=x
Αφαιρέστε 13 και από τις δύο πλευρές.
x^{2}+2x-20=x
Αφαιρέστε 13 από -7 για να λάβετε -20.
x^{2}+2x-20-x=0
Αφαιρέστε x και από τις δύο πλευρές.
x^{2}+x-20=0
Συνδυάστε το 2x και το -x για να λάβετε x.
a+b=1 ab=-20
Για να λύσετε την εξίσωση, παραγοντοποιήστε x^{2}+x-20 χρησιμοποιώντας τον τύπο x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,20 -2,10 -4,5
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -20.
-1+20=19 -2+10=8 -4+5=1
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=5
Η λύση είναι το ζεύγος που δίνει άθροισμα 1.
\left(x-4\right)\left(x+5\right)
Επανεγγραφή παραγοντοποιηθεί παράστασης \left(x+a\right)\left(x+b\right) χρησιμοποιώντας τις τιμές που έχουν ληφθεί.
x=4 x=-5
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-4=0 και x+5=0.
x^{2}+2x-7-13=x
Αφαιρέστε 13 και από τις δύο πλευρές.
x^{2}+2x-20=x
Αφαιρέστε 13 από -7 για να λάβετε -20.
x^{2}+2x-20-x=0
Αφαιρέστε x και από τις δύο πλευρές.
x^{2}+x-20=0
Συνδυάστε το 2x και το -x για να λάβετε x.
a+b=1 ab=1\left(-20\right)=-20
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως x^{2}+ax+bx-20. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
-1,20 -2,10 -4,5
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -20.
-1+20=19 -2+10=8 -4+5=1
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-4 b=5
Η λύση είναι το ζεύγος που δίνει άθροισμα 1.
\left(x^{2}-4x\right)+\left(5x-20\right)
Γράψτε πάλι το x^{2}+x-20 ως \left(x^{2}-4x\right)+\left(5x-20\right).
x\left(x-4\right)+5\left(x-4\right)
Παραγοντοποιήστε x στο πρώτο και στο 5 της δεύτερης ομάδας.
\left(x-4\right)\left(x+5\right)
Παραγοντοποιήστε τον κοινό όρο x-4 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=4 x=-5
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-4=0 και x+5=0.
x^{2}+2x-7-13=x
Αφαιρέστε 13 και από τις δύο πλευρές.
x^{2}+2x-20=x
Αφαιρέστε 13 από -7 για να λάβετε -20.
x^{2}+2x-20-x=0
Αφαιρέστε x και από τις δύο πλευρές.
x^{2}+x-20=0
Συνδυάστε το 2x και το -x για να λάβετε x.
x=\frac{-1±\sqrt{1^{2}-4\left(-20\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με 1 και το c με -20 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-20\right)}}{2}
Υψώστε το 1 στο τετράγωνο.
x=\frac{-1±\sqrt{1+80}}{2}
Πολλαπλασιάστε το -4 επί -20.
x=\frac{-1±\sqrt{81}}{2}
Προσθέστε το 1 και το 80.
x=\frac{-1±9}{2}
Λάβετε την τετραγωνική ρίζα του 81.
x=\frac{8}{2}
Λύστε τώρα την εξίσωση x=\frac{-1±9}{2} όταν το ± είναι συν. Προσθέστε το -1 και το 9.
x=4
Διαιρέστε το 8 με το 2.
x=-\frac{10}{2}
Λύστε τώρα την εξίσωση x=\frac{-1±9}{2} όταν το ± είναι μείον. Αφαιρέστε 9 από -1.
x=-5
Διαιρέστε το -10 με το 2.
x=4 x=-5
Η εξίσωση έχει πλέον λυθεί.
x^{2}+2x-7-x=13
Αφαιρέστε x και από τις δύο πλευρές.
x^{2}+x-7=13
Συνδυάστε το 2x και το -x για να λάβετε x.
x^{2}+x=13+7
Προσθήκη 7 και στις δύο πλευρές.
x^{2}+x=20
Προσθέστε 13 και 7 για να λάβετε 20.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=20+\left(\frac{1}{2}\right)^{2}
Διαιρέστε το 1, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{1}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{1}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+x+\frac{1}{4}=20+\frac{1}{4}
Υψώστε το \frac{1}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+x+\frac{1}{4}=\frac{81}{4}
Προσθέστε το 20 και το \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{81}{4}
Παραγον x^{2}+x+\frac{1}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{1}{2}=\frac{9}{2} x+\frac{1}{2}=-\frac{9}{2}
Απλοποιήστε.
x=4 x=-5
Αφαιρέστε \frac{1}{2} και από τις δύο πλευρές της εξίσωσης.