Λύση ως προς x
x\in (-\infty,-5]\cup [3,\infty)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}+2x-15=0
Για να επιλύσετε τις ανισότητες, παραγοντοποιήστε την αριστερή πλευρά. Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 1\left(-15\right)}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, 2 για b και -15 για c στον πολυωνυμικό τύπου.
x=\frac{-2±8}{2}
Κάντε τους υπολογισμούς.
x=3 x=-5
Επιλύστε την εξίσωση x=\frac{-2±8}{2} όταν το ± είναι συν και όταν ± είναι μείον.
\left(x-3\right)\left(x+5\right)\geq 0
Γράψτε ξανά τις ανισότητες, χρησιμοποιώντας τις λύσεις που βρέθηκαν.
x-3\leq 0 x+5\leq 0
Για να είναι το γινόμενο ≥0, τα x-3 και x+5 πρέπει να είναι και τα δύο ≤0 ή και τα δύο ≥0. Σκεφτείτε την περίπτωση όταν τα x-3 και x+5 είναι και τα δύο ≤0.
x\leq -5
Η λύση που ικανοποιεί και τις δύο ανισότητες είναι x\leq -5.
x+5\geq 0 x-3\geq 0
Σκεφτείτε την περίπτωση όταν τα x-3 και x+5 είναι και τα δύο ≥0.
x\geq 3
Η λύση που ικανοποιεί και τις δύο ανισότητες είναι x\geq 3.
x\leq -5\text{; }x\geq 3
Η τελική λύση είναι η ένωση των λύσεων που βρέθηκαν.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}