Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

x^{2}+13x=2
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x^{2}+13x-2=2-2
Αφαιρέστε 2 και από τις δύο πλευρές της εξίσωσης.
x^{2}+13x-2=0
Η αφαίρεση του 2 από τον εαυτό έχει ως αποτέλεσμα 0.
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)}}{2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 1, το b με 13 και το c με -2 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-13±\sqrt{169-4\left(-2\right)}}{2}
Υψώστε το 13 στο τετράγωνο.
x=\frac{-13±\sqrt{169+8}}{2}
Πολλαπλασιάστε το -4 επί -2.
x=\frac{-13±\sqrt{177}}{2}
Προσθέστε το 169 και το 8.
x=\frac{\sqrt{177}-13}{2}
Λύστε τώρα την εξίσωση x=\frac{-13±\sqrt{177}}{2} όταν το ± είναι συν. Προσθέστε το -13 και το \sqrt{177}.
x=\frac{-\sqrt{177}-13}{2}
Λύστε τώρα την εξίσωση x=\frac{-13±\sqrt{177}}{2} όταν το ± είναι μείον. Αφαιρέστε \sqrt{177} από -13.
x=\frac{\sqrt{177}-13}{2} x=\frac{-\sqrt{177}-13}{2}
Η εξίσωση έχει πλέον λυθεί.
x^{2}+13x=2
Οι δευτεροβάθμιες εξισώσεις όπως αυτή είναι δυνατό να λυθούν συμπληρώνοντας το τετράγωνο. Για να συμπληρώσετε το τετράγωνο, η εξίσωση πρώτα πρέπει να είναι στη μορφή x^{2}+bx=c.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=2+\left(\frac{13}{2}\right)^{2}
Διαιρέστε το 13, τον συντελεστή του όρου x, με το 2 για να λάβετε \frac{13}{2}. Στη συνέχεια, προσθέστε το τετράγωνο του \frac{13}{2} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}+13x+\frac{169}{4}=2+\frac{169}{4}
Υψώστε το \frac{13}{2} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}+13x+\frac{169}{4}=\frac{177}{4}
Προσθέστε το 2 και το \frac{169}{4}.
\left(x+\frac{13}{2}\right)^{2}=\frac{177}{4}
Παραγον x^{2}+13x+\frac{169}{4}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{177}{4}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x+\frac{13}{2}=\frac{\sqrt{177}}{2} x+\frac{13}{2}=-\frac{\sqrt{177}}{2}
Απλοποιήστε.
x=\frac{\sqrt{177}-13}{2} x=\frac{-\sqrt{177}-13}{2}
Αφαιρέστε \frac{13}{2} και από τις δύο πλευρές της εξίσωσης.