Λύση ως προς x
x=\frac{-\sqrt{29}-5}{2}\approx -5,192582404
x = \frac{\sqrt{29} + 5}{2} \approx 5,192582404
x=\frac{\sqrt{29}-5}{2}\approx 0,192582404
x=\frac{5-\sqrt{29}}{2}\approx -0,192582404
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
x^{2}x^{2}+1=27x^{2}
Η μεταβλητή x δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x^{2}.
x^{4}+1=27x^{2}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 2 και τον αριθμό 2 για να λάβετε τον αριθμό 4.
x^{4}+1-27x^{2}=0
Αφαιρέστε 27x^{2} και από τις δύο πλευρές.
t^{2}-27t+1=0
Αντικαταστήστε το t με το x^{2}.
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 1\times 1}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, -27 για b και 1 για c στον πολυωνυμικό τύπου.
t=\frac{27±5\sqrt{29}}{2}
Κάντε τους υπολογισμούς.
t=\frac{5\sqrt{29}+27}{2} t=\frac{27-5\sqrt{29}}{2}
Επιλύστε την εξίσωση t=\frac{27±5\sqrt{29}}{2} όταν το ± είναι συν και όταν ± είναι μείον.
x=\frac{\sqrt{29}+5}{2} x=-\frac{\sqrt{29}+5}{2} x=-\frac{5-\sqrt{29}}{2} x=\frac{5-\sqrt{29}}{2}
Αφού x=t^{2}, οι λύσεις ελέγχονται από την αξιολόγηση x=±\sqrt{t} για κάθε t.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}