Υπολογισμός
\frac{px^{5}}{x^{4}+5x^{2}+4}
Διαφόριση ως προς x
\frac{px^{4}\left(x^{4}+15x^{2}+20\right)}{x^{8}+10x^{6}+33x^{4}+40x^{2}+16}
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{px^{4}}{x^{4}+5x^{2}+4}x
Έκφραση του p\times \frac{x^{4}}{x^{4}+5x^{2}+4} ως ενιαίου κλάσματος.
\frac{px^{4}x}{x^{4}+5x^{2}+4}
Έκφραση του \frac{px^{4}}{x^{4}+5x^{2}+4}x ως ενιαίου κλάσματος.
\frac{px^{5}}{x^{4}+5x^{2}+4}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 4 και τον αριθμό 1 για να λάβετε τον αριθμό 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{px^{4}}{x^{4}+5x^{2}+4}x)
Έκφραση του p\times \frac{x^{4}}{x^{4}+5x^{2}+4} ως ενιαίου κλάσματος.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{px^{4}x}{x^{4}+5x^{2}+4})
Έκφραση του \frac{px^{4}}{x^{4}+5x^{2}+4}x ως ενιαίου κλάσματος.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{px^{5}}{x^{4}+5x^{2}+4})
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό 4 και τον αριθμό 1 για να λάβετε τον αριθμό 5.
\frac{\left(x^{4}+5x^{2}+4\right)\frac{\mathrm{d}}{\mathrm{d}x}(px^{5})-px^{5}\frac{\mathrm{d}}{\mathrm{d}x}(x^{4}+5x^{2}+4)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του πηλίκου των δύο συναρτήσεων είναι ο παρονομαστής επί την παράγωγο του αριθμητή μείον τον αριθμητή επί την παράγωγο του παρονομαστή, δια του τετραγώνου του παρονομαστή.
\frac{\left(x^{4}+5x^{2}+4\right)\times 5px^{5-1}-px^{5}\left(4x^{4-1}+2\times 5x^{2-1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
\frac{\left(x^{4}+5x^{2}+4\right)\times 5px^{4}-px^{5}\left(4x^{3}+10x^{1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Απλοποιήστε.
\frac{x^{4}\times 5px^{4}+5x^{2}\times 5px^{4}+4\times 5px^{4}-px^{5}\left(4x^{3}+10x^{1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Πολλαπλασιάστε το x^{4}+5x^{2}+4 επί 5px^{4}.
\frac{x^{4}\times 5px^{4}+5x^{2}\times 5px^{4}+4\times 5px^{4}-\left(px^{5}\times 4x^{3}+px^{5}\times 10x^{1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Πολλαπλασιάστε το px^{5} επί 4x^{3}+10x^{1}.
\frac{5px^{4+4}+5\times 5px^{2+4}+4\times 5px^{4}-\left(p\times 4x^{5+3}+p\times 10x^{5+1}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{5px^{8}+25px^{6}+20px^{4}-\left(4px^{8}+10px^{6}\right)}{\left(x^{4}+5x^{2}+4\right)^{2}}
Απλοποιήστε.
\frac{px^{8}+15px^{6}+20px^{4}}{\left(x^{4}+5x^{2}+4\right)^{2}}
Συνδυάστε όμοιους όρους.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}