Λύση ως προς n
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
n^{2}-4019n+4036081\leq 0
Υπολογίστε το 2009στη δύναμη του 2 και λάβετε 4036081.
n^{2}-4019n+4036081=0
Για να επιλύσετε τις ανισότητες, παραγοντοποιήστε την αριστερή πλευρά. Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
n=\frac{-\left(-4019\right)±\sqrt{\left(-4019\right)^{2}-4\times 1\times 4036081}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να επιλυθούν χρησιμοποιώντας τον πολυωνυμικό τύπο: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Υποκαταστήστε 1 για a, -4019 για b και 4036081 για c στον πολυωνυμικό τύπου.
n=\frac{4019±3\sqrt{893}}{2}
Κάντε τους υπολογισμούς.
n=\frac{3\sqrt{893}+4019}{2} n=\frac{4019-3\sqrt{893}}{2}
Επιλύστε την εξίσωση n=\frac{4019±3\sqrt{893}}{2} όταν το ± είναι συν και όταν ± είναι μείον.
\left(n-\frac{3\sqrt{893}+4019}{2}\right)\left(n-\frac{4019-3\sqrt{893}}{2}\right)\leq 0
Γράψτε ξανά τις ανισότητες, χρησιμοποιώντας τις λύσεις που βρέθηκαν.
n-\frac{3\sqrt{893}+4019}{2}\geq 0 n-\frac{4019-3\sqrt{893}}{2}\leq 0
Για να είναι το γινόμενο ≤0, μία από τις τιμές n-\frac{3\sqrt{893}+4019}{2} και n-\frac{4019-3\sqrt{893}}{2} πρέπει να είναι ≥0 και η άλλη πρέπει να είναι ≤0. Εξετάστε το ενδεχόμενο όπου n-\frac{3\sqrt{893}+4019}{2}\geq 0 και n-\frac{4019-3\sqrt{893}}{2}\leq 0.
n\in \emptyset
Αυτό είναι ψευδές για οποιοδήποτε n.
n-\frac{4019-3\sqrt{893}}{2}\geq 0 n-\frac{3\sqrt{893}+4019}{2}\leq 0
Εξετάστε το ενδεχόμενο όπου n-\frac{3\sqrt{893}+4019}{2}\leq 0 και n-\frac{4019-3\sqrt{893}}{2}\geq 0.
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Η λύση που ικανοποιεί και τις δύο ανισότητες είναι n\in \left[\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\right].
n\in \begin{bmatrix}\frac{4019-3\sqrt{893}}{2},\frac{3\sqrt{893}+4019}{2}\end{bmatrix}
Η τελική λύση είναι η ένωση των λύσεων που βρέθηκαν.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}