Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

\left(k^{45}+1\right)\left(k^{90}-k^{45}+1\right)
Γράψτε πάλι το k^{135}+1 ως \left(k^{45}\right)^{3}+1^{3}. Το σύνολο των κύβων μπορεί να παραγοντοποιηθεί χρησιμοποιώντας τον κανόνα: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{15}+1\right)\left(k^{30}-k^{15}+1\right)
Υπολογίστε k^{45}+1. Γράψτε πάλι το k^{45}+1 ως \left(k^{15}\right)^{3}+1^{3}. Το σύνολο των κύβων μπορεί να παραγοντοποιηθεί χρησιμοποιώντας τον κανόνα: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k^{5}+1\right)\left(k^{10}-k^{5}+1\right)
Υπολογίστε k^{15}+1. Γράψτε πάλι το k^{15}+1 ως \left(k^{5}\right)^{3}+1^{3}. Το σύνολο των κύβων μπορεί να παραγοντοποιηθεί χρησιμοποιώντας τον κανόνα: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(k+1\right)\left(k^{4}-k^{3}+k^{2}-k+1\right)
Υπολογίστε k^{5}+1. Από τη ρητών ρίζας θεώρημα, όλες οι ρητών ρίζες ενός πολυωνύμου βρίσκονται στη \frac{p}{q} φόρμας, όπου p διαιρείται τη σταθερή 1 όρων και q διαιρείται τον αρχικό συντελεστή 1. Μία από αυτές τις ρίζες είναι η -1. Παραγοντοποιήστε το πολυώνυμο διαιρώντας το από το k+1.
\left(k^{4}-k^{3}+k^{2}-k+1\right)\left(k+1\right)\left(k^{10}-k^{5}+1\right)\left(k^{30}-k^{15}+1\right)\left(k^{90}-k^{45}+1\right)
Γράψτε ξανά την πλήρη παραγοντοποιημένη παράσταση. Τα ακόλουθα πολυώνυμα δεν έχουν παραγοντοποιηθεί, επειδή δεν έχουν λογικές ρίζες: k^{4}-k^{3}+k^{2}-k+1,k^{10}-k^{5}+1,k^{30}-k^{15}+1,k^{90}-k^{45}+1.