Λύση ως προς m
\left\{\begin{matrix}m=\frac{2k}{v^{2}}\text{, }&v\neq 0\\m\in \mathrm{R}\text{, }&k=0\text{ and }v=0\end{matrix}\right,
Λύση ως προς k
k=\frac{mv^{2}}{2}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
\frac{1}{2}mv^{2}=k
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\frac{v^{2}}{2}m=k
Η εξίσωση είναι σε τυπική μορφή.
\frac{2\times \frac{v^{2}}{2}m}{v^{2}}=\frac{2k}{v^{2}}
Διαιρέστε και τις δύο πλευρές με \frac{1}{2}v^{2}.
m=\frac{2k}{v^{2}}
Η διαίρεση με το \frac{1}{2}v^{2} αναιρεί τον πολλαπλασιασμό με το \frac{1}{2}v^{2}.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}