Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

-x^{2}+2x+3
Αναδιατάξτε το πολυώνυμο για να το θέσετε σε τυπική μορφή. Τοποθετήστε τους όρους με τη σειρά, από τη μεγαλύτερη προς τη μικρότερη δύναμη.
a+b=2 ab=-3=-3
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως -x^{2}+ax+bx+3. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
a=3 b=-1
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Δεδομένου ότι a+b είναι θετικός, ο θετικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από τη αρνητική. Το μόνο τέτοιο ζεύγος είναι η λύση του συστήματος.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Γράψτε πάλι το -x^{2}+2x+3 ως \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Παραγοντοποιήστε -x στο πρώτο και στο -1 της δεύτερης ομάδας.
\left(x-3\right)\left(-x-1\right)
Παραγοντοποιήστε τον κοινό όρο x-3 χρησιμοποιώντας επιμεριστική ιδιότητα.
-x^{2}+2x+3=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Υψώστε το 2 στο τετράγωνο.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Πολλαπλασιάστε το -4 επί -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Πολλαπλασιάστε το 4 επί 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Προσθέστε το 4 και το 12.
x=\frac{-2±4}{2\left(-1\right)}
Λάβετε την τετραγωνική ρίζα του 16.
x=\frac{-2±4}{-2}
Πολλαπλασιάστε το 2 επί -1.
x=\frac{2}{-2}
Λύστε τώρα την εξίσωση x=\frac{-2±4}{-2} όταν το ± είναι συν. Προσθέστε το -2 και το 4.
x=-1
Διαιρέστε το 2 με το -2.
x=-\frac{6}{-2}
Λύστε τώρα την εξίσωση x=\frac{-2±4}{-2} όταν το ± είναι μείον. Αφαιρέστε 4 από -2.
x=3
Διαιρέστε το -6 με το -2.
-x^{2}+2x+3=-\left(x-\left(-1\right)\right)\left(x-3\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το -1 με το x_{1} και το 3 με το x_{2}.
-x^{2}+2x+3=-\left(x+1\right)\left(x-3\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.