Λύση ως προς h
h=-\frac{2x^{2}-2x+5}{x\left(1-x\right)}
x\neq 1\text{ and }x\neq 0
Λύση ως προς x (complex solution)
x=\frac{\sqrt{-\left(2-h\right)\left(h+18\right)}-h+2}{2\left(2-h\right)}
x=\frac{-\sqrt{-\left(2-h\right)\left(h+18\right)}-h+2}{2\left(2-h\right)}\text{, }h\neq 2
Λύση ως προς x
x=\frac{\sqrt{-\left(2-h\right)\left(h+18\right)}-h+2}{2\left(2-h\right)}
x=\frac{-\sqrt{-\left(2-h\right)\left(h+18\right)}-h+2}{2\left(2-h\right)}\text{, }h>2\text{ or }h\leq -18
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
2x\left(x-1\right)-hx\left(x-1\right)=-5
Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με x-1.
2x^{2}-2x-hx\left(x-1\right)=-5
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 2x με το x-1.
2x^{2}-2x-hx^{2}+xh=-5
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το -hx με το x-1.
-2x-hx^{2}+xh=-5-2x^{2}
Αφαιρέστε 2x^{2} και από τις δύο πλευρές.
-hx^{2}+xh=-5-2x^{2}+2x
Προσθήκη 2x και στις δύο πλευρές.
\left(-x^{2}+x\right)h=-5-2x^{2}+2x
Συνδυάστε όλους τους όρους που περιέχουν h.
\left(x-x^{2}\right)h=-2x^{2}+2x-5
Η εξίσωση είναι σε τυπική μορφή.
\frac{\left(x-x^{2}\right)h}{x-x^{2}}=\frac{-2x^{2}+2x-5}{x-x^{2}}
Διαιρέστε και τις δύο πλευρές με -x^{2}+x.
h=\frac{-2x^{2}+2x-5}{x-x^{2}}
Η διαίρεση με το -x^{2}+x αναιρεί τον πολλαπλασιασμό με το -x^{2}+x.
h=\frac{-2x^{2}+2x-5}{x\left(1-x\right)}
Διαιρέστε το -5-2x^{2}+2x με το -x^{2}+x.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}