Λύση ως προς a
a=-\frac{4b-105}{b+4}
b\neq -4
Λύση ως προς b
b=-\frac{4a-105}{a+4}
a\neq -4
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
ab+4a-9=96-4b
Αφαιρέστε 4b και από τις δύο πλευρές.
ab+4a=96-4b+9
Προσθήκη 9 και στις δύο πλευρές.
ab+4a=105-4b
Προσθέστε 96 και 9 για να λάβετε 105.
\left(b+4\right)a=105-4b
Συνδυάστε όλους τους όρους που περιέχουν a.
\frac{\left(b+4\right)a}{b+4}=\frac{105-4b}{b+4}
Διαιρέστε και τις δύο πλευρές με b+4.
a=\frac{105-4b}{b+4}
Η διαίρεση με το b+4 αναιρεί τον πολλαπλασιασμό με το b+4.
ab+4b-9=96-4a
Αφαιρέστε 4a και από τις δύο πλευρές.
ab+4b=96-4a+9
Προσθήκη 9 και στις δύο πλευρές.
ab+4b=105-4a
Προσθέστε 96 και 9 για να λάβετε 105.
\left(a+4\right)b=105-4a
Συνδυάστε όλους τους όρους που περιέχουν b.
\frac{\left(a+4\right)b}{a+4}=\frac{105-4a}{a+4}
Διαιρέστε και τις δύο πλευρές με a+4.
b=\frac{105-4a}{a+4}
Η διαίρεση με το a+4 αναιρεί τον πολλαπλασιασμό με το a+4.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}