Λύση ως προς a_n
a_{n}=7\left(n+2\right)
Λύση ως προς n
n=\frac{a_{n}-14}{7}
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a_{n}=7+7n+7
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 7 με το n+1.
a_{n}=14+7n
Προσθέστε 7 και 7 για να λάβετε 14.
a_{n}=7+7n+7
Χρησιμοποιήστε την επιμεριστική ιδιότητα για να πολλαπλασιάσετε το 7 με το n+1.
a_{n}=14+7n
Προσθέστε 7 και 7 για να λάβετε 14.
14+7n=a_{n}
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
7n=a_{n}-14
Αφαιρέστε 14 και από τις δύο πλευρές.
\frac{7n}{7}=\frac{a_{n}-14}{7}
Διαιρέστε και τις δύο πλευρές με 7.
n=\frac{a_{n}-14}{7}
Η διαίρεση με το 7 αναιρεί τον πολλαπλασιασμό με το 7.
n=\frac{a_{n}}{7}-2
Διαιρέστε το a_{n}-14 με το 7.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}