Λύση ως προς A_n (complex solution)
A_{n}\neq 0
n=\frac{1}{S_{n}m}\text{ and }S_{n}\neq 0\text{ and }m\neq 0
Λύση ως προς A_n
A_{n}\neq 0
S_{n}\neq 0\text{ and }m\neq 0\text{ and }n=\frac{1}{S_{n}m}
Λύση ως προς S_n
S_{n}=\frac{1}{mn}
m\neq 0\text{ and }n\neq 0\text{ and }A_{n}\neq 0
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
S_{n}A_{n}mn=A_{n}
Η μεταβλητή A_{n} δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με A_{n}mn.
S_{n}A_{n}mn-A_{n}=0
Αφαιρέστε A_{n} και από τις δύο πλευρές.
\left(S_{n}mn-1\right)A_{n}=0
Συνδυάστε όλους τους όρους που περιέχουν A_{n}.
A_{n}=0
Διαιρέστε το 0 με το S_{n}mn-1.
A_{n}\in \emptyset
Η μεταβλητή A_{n} δεν μπορεί να είναι ίση με 0.
S_{n}A_{n}mn=A_{n}
Η μεταβλητή A_{n} δεν μπορεί να είναι ίση με 0 επειδή δεν μπορεί να οριστεί η διαίρεση με το μηδέν. Πολλαπλασιάστε και τις δύο πλευρές της εξίσωσης με A_{n}mn.
S_{n}A_{n}mn-A_{n}=0
Αφαιρέστε A_{n} και από τις δύο πλευρές.
\left(S_{n}mn-1\right)A_{n}=0
Συνδυάστε όλους τους όρους που περιέχουν A_{n}.
A_{n}=0
Διαιρέστε το 0 με το S_{n}mn-1.
A_{n}\in \emptyset
Η μεταβλητή A_{n} δεν μπορεί να είναι ίση με 0.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}