Λύση ως προς I
I=\frac{3}{4}=0,75
Αντιστοίχιση I
I≔\frac{3}{4}
Κουίζ
Linear Equation
5 προβλήματα όπως:
I = \frac { 1 } { 20 } + \frac { 2 } { 5 } + \frac { 3 } { 10 } =
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
I=\frac{1}{20}+\frac{8}{20}+\frac{3}{10}
Το ελάχιστο κοινό πολλαπλάσιο των 20 και 5 είναι 20. Μετατροπή των \frac{1}{20} και \frac{2}{5} σε κλάσματα με παρονομαστή 20.
I=\frac{1+8}{20}+\frac{3}{10}
Από τη στιγμή που οι αριθμοί \frac{1}{20} και \frac{8}{20} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
I=\frac{9}{20}+\frac{3}{10}
Προσθέστε 1 και 8 για να λάβετε 9.
I=\frac{9}{20}+\frac{6}{20}
Το ελάχιστο κοινό πολλαπλάσιο των 20 και 10 είναι 20. Μετατροπή των \frac{9}{20} και \frac{3}{10} σε κλάσματα με παρονομαστή 20.
I=\frac{9+6}{20}
Από τη στιγμή που οι αριθμοί \frac{9}{20} και \frac{6}{20} έχουν τον ίδιο παρονομαστή, μπορείτε να τους προσθέσετε προσθέτοντας τους αριθμητές τους.
I=\frac{15}{20}
Προσθέστε 9 και 6 για να λάβετε 15.
I=\frac{3}{4}
Μειώστε το κλάσμα \frac{15}{20} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 5.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}