Λύση ως προς F
\left\{\begin{matrix}F=\frac{24\left(2H+7\right)}{s}\text{, }&s\neq 0\\F\in \mathrm{R}\text{, }&H=-\frac{7}{2}\text{ and }s=0\end{matrix}\right,
Λύση ως προς H
H=\frac{Fs-168}{48}
Κουίζ
Linear Equation
5 προβλήματα όπως:
F \quad s = 2 \cdot ( 14 \cdot 6 ) + 2 \cdot ( 4 \cdot 6 ) \cdot H
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
Fs=28\times 6+8\times 6H
Κάντε τους πολλαπλασιασμούς.
Fs=168+8\times 6H
Πολλαπλασιάστε 28 και 6 για να λάβετε 168.
Fs=168+48H
Πολλαπλασιάστε 8 και 6 για να λάβετε 48.
sF=48H+168
Η εξίσωση είναι σε τυπική μορφή.
\frac{sF}{s}=\frac{48H+168}{s}
Διαιρέστε και τις δύο πλευρές με s.
F=\frac{48H+168}{s}
Η διαίρεση με το s αναιρεί τον πολλαπλασιασμό με το s.
F=\frac{24\left(2H+7\right)}{s}
Διαιρέστε το 168+48H με το s.
Fs=28\times 6+8\times 6H
Κάντε τους πολλαπλασιασμούς.
Fs=168+8\times 6H
Πολλαπλασιάστε 28 και 6 για να λάβετε 168.
Fs=168+48H
Πολλαπλασιάστε 8 και 6 για να λάβετε 48.
168+48H=Fs
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
48H=Fs-168
Αφαιρέστε 168 και από τις δύο πλευρές.
\frac{48H}{48}=\frac{Fs-168}{48}
Διαιρέστε και τις δύο πλευρές με 48.
H=\frac{Fs-168}{48}
Η διαίρεση με το 48 αναιρεί τον πολλαπλασιασμό με το 48.
H=\frac{Fs}{48}-\frac{7}{2}
Διαιρέστε το Fs-168 με το 48.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}