Mετάβαση στο κυρίως περιεχόμενο
Διαφόριση ως προς D
Tick mark Image
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

D^{\frac{2}{5}}\frac{\mathrm{d}}{\mathrm{d}D}(\sqrt[5]{D})+\sqrt[5]{D}\frac{\mathrm{d}}{\mathrm{d}D}(D^{\frac{2}{5}})
Για οποιεσδήποτε δύο διαφορίσιμες συναρτήσεις, η παράγωγος του γινομένου των δύο συναρτήσεων είναι η πρώτη συνάρτηση επί την παράγωγο της δεύτερης συν τη δεύτερη συνάρτηση επί την παράγωγο της πρώτης.
D^{\frac{2}{5}}\times \frac{1}{5}D^{\frac{1}{5}-1}+\sqrt[5]{D}\times \frac{2}{5}D^{\frac{2}{5}-1}
Η παράγωγος ενός πολυωνύμου είναι το άθροισμα του παραγώγων των όρων του. Η παράγωγος της σταθεράς είναι 0. Η παράγωγος του ax^{n} είναι nax^{n-1}.
D^{\frac{2}{5}}\times \frac{1}{5}D^{-\frac{4}{5}}+\sqrt[5]{D}\times \frac{2}{5}D^{-\frac{3}{5}}
Απλοποιήστε.
\frac{1}{5}D^{\frac{2-4}{5}}+\frac{2}{5}D^{\frac{1-3}{5}}
Για να πολλαπλασιάσετε δυνάμεις με την ίδια βάση, προσθέστε τους εκθέτες τους.
\frac{1}{5}D^{-\frac{2}{5}}+\frac{2}{5}D^{-\frac{2}{5}}
Απλοποιήστε.
D^{\frac{3}{5}}
Για να πολλαπλασιάσετε δυνάμεις της ίδιας βάσης, προσθέστε τους εκθέτες. Προσθέστε τον αριθμό \frac{2}{5} και τον αριθμό \frac{1}{5} για να λάβετε τον αριθμό \frac{3}{5}.