Παράγοντας
\left(B+2\right)\left(B+4\right)
Υπολογισμός
\left(B+2\right)\left(B+4\right)
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
a+b=6 ab=1\times 8=8
Παραγοντοποιήστε την παράσταση με ομαδοποίηση. Αρχικά, η παράσταση πρέπει να γραφτεί ξανά ως B^{2}+aB+bB+8. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,8 2,4
Εφόσον ab είναι θετική, a και b έχουν το ίδιο πρόσημο. Επειδή η a+b είναι θετική, a και b είναι θετικοί. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο 8.
1+8=9 2+4=6
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=2 b=4
Η λύση είναι το ζεύγος που δίνει άθροισμα 6.
\left(B^{2}+2B\right)+\left(4B+8\right)
Γράψτε πάλι το B^{2}+6B+8 ως \left(B^{2}+2B\right)+\left(4B+8\right).
B\left(B+2\right)+4\left(B+2\right)
Παραγοντοποιήστε B στο πρώτο και στο 4 της δεύτερης ομάδας.
\left(B+2\right)\left(B+4\right)
Παραγοντοποιήστε τον κοινό όρο B+2 χρησιμοποιώντας επιμεριστική ιδιότητα.
B^{2}+6B+8=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
B=\frac{-6±\sqrt{6^{2}-4\times 8}}{2}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
B=\frac{-6±\sqrt{36-4\times 8}}{2}
Υψώστε το 6 στο τετράγωνο.
B=\frac{-6±\sqrt{36-32}}{2}
Πολλαπλασιάστε το -4 επί 8.
B=\frac{-6±\sqrt{4}}{2}
Προσθέστε το 36 και το -32.
B=\frac{-6±2}{2}
Λάβετε την τετραγωνική ρίζα του 4.
B=-\frac{4}{2}
Λύστε τώρα την εξίσωση B=\frac{-6±2}{2} όταν το ± είναι συν. Προσθέστε το -6 και το 2.
B=-2
Διαιρέστε το -4 με το 2.
B=-\frac{8}{2}
Λύστε τώρα την εξίσωση B=\frac{-6±2}{2} όταν το ± είναι μείον. Αφαιρέστε 2 από -6.
B=-4
Διαιρέστε το -8 με το 2.
B^{2}+6B+8=\left(B-\left(-2\right)\right)\left(B-\left(-4\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το -2 με το x_{1} και το -4 με το x_{2}.
B^{2}+6B+8=\left(B+2\right)\left(B+4\right)
Απλοποιήστε όλες τις παραστάσεις της μορφής p-\left(-q\right) σε p+q.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}