Mετάβαση στο κυρίως περιεχόμενο
Λύση ως προς x
Tick mark Image
Γράφημα

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

2x^{2}-3x=9
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
2x^{2}-3x-9=0
Αφαιρέστε 9 και από τις δύο πλευρές.
a+b=-3 ab=2\left(-9\right)=-18
Για να λύσετε την εξίσωση, παραγοντοποιήστε την αριστερή πλευρά με ομαδοποίηση. Αρχικά, η αριστερή πλευρά πρέπει να γραφτεί ξανά ως 2x^{2}+ax+bx-9. Για να βρείτε a και b, ρυθμίστε ένα σύστημα για επίλυση.
1,-18 2,-9 3,-6
Εφόσον το ab είναι αρνητικό, οι a και b έχουν τα αντίθετο σήματα. Εφόσον το a+b είναι αρνητικό, ο αρνητικός αριθμός έχει μεγαλύτερη απόλυτη τιμή από το θετικό. Εμφάνιση όλων αυτών των ζευγών ακέραιων αριθμών που επιστρέφουν γινόμενο -18.
1-18=-17 2-9=-7 3-6=-3
Υπολογίστε το άθροισμα για κάθε ζεύγος.
a=-6 b=3
Η λύση είναι το ζεύγος που δίνει άθροισμα -3.
\left(2x^{2}-6x\right)+\left(3x-9\right)
Γράψτε πάλι το 2x^{2}-3x-9 ως \left(2x^{2}-6x\right)+\left(3x-9\right).
2x\left(x-3\right)+3\left(x-3\right)
Παραγοντοποιήστε 2x στο πρώτο και στο 3 της δεύτερης ομάδας.
\left(x-3\right)\left(2x+3\right)
Παραγοντοποιήστε τον κοινό όρο x-3 χρησιμοποιώντας επιμεριστική ιδιότητα.
x=3 x=-\frac{3}{2}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x-3=0 και 2x+3=0.
2x^{2}-3x=9
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
2x^{2}-3x-9=0
Αφαιρέστε 9 και από τις δύο πλευρές.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-9\right)}}{2\times 2}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 2, το b με -3 και το c με -9 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-9\right)}}{2\times 2}
Υψώστε το -3 στο τετράγωνο.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-9\right)}}{2\times 2}
Πολλαπλασιάστε το -4 επί 2.
x=\frac{-\left(-3\right)±\sqrt{9+72}}{2\times 2}
Πολλαπλασιάστε το -8 επί -9.
x=\frac{-\left(-3\right)±\sqrt{81}}{2\times 2}
Προσθέστε το 9 και το 72.
x=\frac{-\left(-3\right)±9}{2\times 2}
Λάβετε την τετραγωνική ρίζα του 81.
x=\frac{3±9}{2\times 2}
Το αντίθετο ενός αριθμού -3 είναι 3.
x=\frac{3±9}{4}
Πολλαπλασιάστε το 2 επί 2.
x=\frac{12}{4}
Λύστε τώρα την εξίσωση x=\frac{3±9}{4} όταν το ± είναι συν. Προσθέστε το 3 και το 9.
x=3
Διαιρέστε το 12 με το 4.
x=-\frac{6}{4}
Λύστε τώρα την εξίσωση x=\frac{3±9}{4} όταν το ± είναι μείον. Αφαιρέστε 9 από 3.
x=-\frac{3}{2}
Μειώστε το κλάσμα \frac{-6}{4} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=3 x=-\frac{3}{2}
Η εξίσωση έχει πλέον λυθεί.
2x^{2}-3x=9
Κάντε εναλλαγή πλευρών έτσι ώστε όλοι οι μεταβλητοί όροι να βρίσκονται στην αριστερή πλευρά.
\frac{2x^{2}-3x}{2}=\frac{9}{2}
Διαιρέστε και τις δύο πλευρές με 2.
x^{2}-\frac{3}{2}x=\frac{9}{2}
Η διαίρεση με το 2 αναιρεί τον πολλαπλασιασμό με το 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{9}{2}+\left(-\frac{3}{4}\right)^{2}
Διαιρέστε το -\frac{3}{2}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{3}{4}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{3}{4} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{9}{2}+\frac{9}{16}
Υψώστε το -\frac{3}{4} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{81}{16}
Προσθέστε το \frac{9}{2} και το \frac{9}{16} βρίσκοντας έναν κοινό παρονομαστή και προσθέτοντας τους αριθμητές. Στη συνέχεια, απλοποιήστε το κλάσμα στους μικρότερους δυνατούς όρους, εάν αυτό είναι δυνατό.
\left(x-\frac{3}{4}\right)^{2}=\frac{81}{16}
Παραγον x^{2}-\frac{3}{2}x+\frac{9}{16}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{81}{16}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{3}{4}=\frac{9}{4} x-\frac{3}{4}=-\frac{9}{4}
Απλοποιήστε.
x=3 x=-\frac{3}{2}
Προσθέστε \frac{3}{4} και στις δύο πλευρές της εξίσωσης.