Λύση ως προς x
x\in (-\infty,-3]\cup [3,\infty)
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
-9+x^{2}\geq 0
Πολλαπλασιάστε την ανισότητα με -1 για να γίνει ο συντελεστής στην υψηλότερη δύναμη του 9-x^{2} θετικός. Εφόσον το -1 είναι αρνητικό, η κατεύθυνση της ανισότητα αλλάζει.
x^{2}\geq 9
Προσθήκη 9 και στις δύο πλευρές.
x^{2}\geq 3^{2}
Υπολογίστε την τετραγωνική ρίζα του 9 και λάβετε 3. Γράψτε πάλι το 9 ως 3^{2}.
|x|\geq 3
Η ανισότητα ισχύει για |x|\geq 3.
x\leq -3\text{; }x\geq 3
Γράψτε πάλι το |x|\geq 3 ως x\leq -3\text{; }x\geq 3.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}