Mετάβαση στο κυρίως περιεχόμενο
Παράγοντας
Tick mark Image
Υπολογισμός
Tick mark Image

Παρόμοια προβλήματα από την Αναζήτηση στο web

Κοινοποίηση

6u^{2}+24u-36=0
Η τετραγωνική πολυωνυμική εξίσωση μπορεί να παραγοντοποιηθεί, χρησιμοποιώντας το μετασχηματισμό ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), όπου x_{1} και x_{2} είναι οι λύσεις της τετραγωνικής εξίσωσης ax^{2}+bx+c=0.
u=\frac{-24±\sqrt{24^{2}-4\times 6\left(-36\right)}}{2\times 6}
Όλες οι εξισώσεις της μορφής ax^{2}+bx+c=0 μπορούν να λυθούν με χρήση του τετραγωνικού τύπου: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ο τετραγωνικός τύπος παρέχει δύο λύσεις, μία όταν το ± είναι συν και μία όταν είναι πλην.
u=\frac{-24±\sqrt{576-4\times 6\left(-36\right)}}{2\times 6}
Υψώστε το 24 στο τετράγωνο.
u=\frac{-24±\sqrt{576-24\left(-36\right)}}{2\times 6}
Πολλαπλασιάστε το -4 επί 6.
u=\frac{-24±\sqrt{576+864}}{2\times 6}
Πολλαπλασιάστε το -24 επί -36.
u=\frac{-24±\sqrt{1440}}{2\times 6}
Προσθέστε το 576 και το 864.
u=\frac{-24±12\sqrt{10}}{2\times 6}
Λάβετε την τετραγωνική ρίζα του 1440.
u=\frac{-24±12\sqrt{10}}{12}
Πολλαπλασιάστε το 2 επί 6.
u=\frac{12\sqrt{10}-24}{12}
Λύστε τώρα την εξίσωση u=\frac{-24±12\sqrt{10}}{12} όταν το ± είναι συν. Προσθέστε το -24 και το 12\sqrt{10}.
u=\sqrt{10}-2
Διαιρέστε το -24+12\sqrt{10} με το 12.
u=\frac{-12\sqrt{10}-24}{12}
Λύστε τώρα την εξίσωση u=\frac{-24±12\sqrt{10}}{12} όταν το ± είναι μείον. Αφαιρέστε 12\sqrt{10} από -24.
u=-\sqrt{10}-2
Διαιρέστε το -24-12\sqrt{10} με το 12.
6u^{2}+24u-36=6\left(u-\left(\sqrt{10}-2\right)\right)\left(u-\left(-\sqrt{10}-2\right)\right)
Υπολογίστε την αρχική παράσταση χρησιμοποιώντας το ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Αντικαταστήστε το -2+\sqrt{10} με το x_{1} και το -2-\sqrt{10} με το x_{2}.