Λύση ως προς x
x = \frac{32}{5} = 6\frac{2}{5} = 6,4
x=0
Γράφημα
Κοινοποίηση
Αντιγράφηκε στο πρόχειρο
5x^{2}-32x=0
Πολλαπλασιάστε 4 και 8 για να λάβετε 32.
x\left(5x-32\right)=0
Παραγοντοποιήστε το x.
x=0 x=\frac{32}{5}
Για να βρείτε λύσεις εξίσωσης, να λύσετε x=0 και 5x-32=0.
5x^{2}-32x=0
Πολλαπλασιάστε 4 και 8 για να λάβετε 32.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}}}{2\times 5}
Αυτή η εξίσωση είναι στην τυπική μορφή: ax^{2}+bx+c=0. Αντικαταστήστε το a με 5, το b με -32 και το c με 0 στον τετραγωνικό τύπο, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±32}{2\times 5}
Λάβετε την τετραγωνική ρίζα του \left(-32\right)^{2}.
x=\frac{32±32}{2\times 5}
Το αντίθετο ενός αριθμού -32 είναι 32.
x=\frac{32±32}{10}
Πολλαπλασιάστε το 2 επί 5.
x=\frac{64}{10}
Λύστε τώρα την εξίσωση x=\frac{32±32}{10} όταν το ± είναι συν. Προσθέστε το 32 και το 32.
x=\frac{32}{5}
Μειώστε το κλάσμα \frac{64}{10} σε χαμηλότερους όρους με την εξαγωγή και την ακύρωση του 2.
x=\frac{0}{10}
Λύστε τώρα την εξίσωση x=\frac{32±32}{10} όταν το ± είναι μείον. Αφαιρέστε 32 από 32.
x=0
Διαιρέστε το 0 με το 10.
x=\frac{32}{5} x=0
Η εξίσωση έχει πλέον λυθεί.
5x^{2}-32x=0
Πολλαπλασιάστε 4 και 8 για να λάβετε 32.
\frac{5x^{2}-32x}{5}=\frac{0}{5}
Διαιρέστε και τις δύο πλευρές με 5.
x^{2}-\frac{32}{5}x=\frac{0}{5}
Η διαίρεση με το 5 αναιρεί τον πολλαπλασιασμό με το 5.
x^{2}-\frac{32}{5}x=0
Διαιρέστε το 0 με το 5.
x^{2}-\frac{32}{5}x+\left(-\frac{16}{5}\right)^{2}=\left(-\frac{16}{5}\right)^{2}
Διαιρέστε το -\frac{32}{5}, τον συντελεστή του όρου x, με το 2 για να λάβετε -\frac{16}{5}. Στη συνέχεια, προσθέστε το τετράγωνο του -\frac{16}{5} και στις δύο πλευρές της εξίσωσης. Αυτό το βήμα διευκολύνει στο να κάνετε την αριστερή πλευρά της εξίσωσης ένα τέλειο τετράγωνο.
x^{2}-\frac{32}{5}x+\frac{256}{25}=\frac{256}{25}
Υψώστε το -\frac{16}{5} στο τετράγωνο υψώνοντας στο τετράγωνο τον αριθμητή και τον παρονομαστή του κλάσματος.
\left(x-\frac{16}{5}\right)^{2}=\frac{256}{25}
Παραγον x^{2}-\frac{32}{5}x+\frac{256}{25}. Γενικά, όταν το x^{2}+bx+c είναι ένα τέλειο τετράγωνο, μπορεί πάντα να παραγοντοποηθεί ως \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{16}{5}\right)^{2}}=\sqrt{\frac{256}{25}}
Λάβετε την τετραγωνική ρίζα και των δύο πλευρών της εξίσωσης.
x-\frac{16}{5}=\frac{16}{5} x-\frac{16}{5}=-\frac{16}{5}
Απλοποιήστε.
x=\frac{32}{5} x=0
Προσθέστε \frac{16}{5} και στις δύο πλευρές της εξίσωσης.
Παραδείγματα
Δευτεροβάθμια εξίσωση
{ x } ^ { 2 } - 4 x - 5 = 0
Τριγωνομετρία
4 \sin \theta \cos \theta = 2 \sin \theta
Γραμμική εξίσωση
y = 3x + 4
Αριθμητική
699 * 533
Πίνακας
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Σύστημα εξισώσεων
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Παραγώγιση
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Ολοκλήρωση
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Όρια
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}